blob: 63d702da2de81219618502d4ab14c4ccb294ffb2 [file] [log] [blame]
#include <math.h>
#include "util.h"
#include "vpr_types.h"
#include <assert.h>
#include "globals.h"
#include "rr_graph_util.h"
#include "rr_graph_area.h"
/************************ Subroutines local to this module *******************/
static void count_bidir_routing_transistors(int num_switch,
float R_minW_nmos,
float R_minW_pmos);
static void count_unidir_routing_transistors(t_segment_inf * segment_inf,
float R_minW_nmos,
float R_minW_pmos);
static float get_cblock_trans(int *num_inputs_to_cblock,
int max_inputs_to_cblock,
float trans_cblock_to_lblock_buf,
float trans_sram_bit);
static float *alloc_and_load_unsharable_switch_trans(int num_switch,
float trans_sram_bit,
float R_minW_nmos);
static float *alloc_and_load_sharable_switch_trans(int num_switch,
float trans_sram_bit,
float R_minW_nmos,
float R_minW_pmos);
static float trans_per_buf(float Rbuf,
float R_minW_nmos,
float R_minW_pmos);
static float trans_per_mux(int num_inputs,
float trans_sram_bit,
float pass_trans_area);
static float trans_per_R(float Rtrans,
float R_minW_trans);
/*************************** Subroutine definitions **************************/
void
count_routing_transistors(enum e_directionality directionality,
int num_switch,
t_segment_inf * segment_inf,
float R_minW_nmos,
float R_minW_pmos)
{
/* Counts how many transistors are needed to implement the FPGA routing *
* resources. Call this only when an rr_graph exists. It does not count *
* the transistors used in logic blocks, but it counts the transistors in *
* the input connection block multiplexers and in the output pin drivers and *
* pass transistors. NB: this routine assumes pass transistors always *
* generate two edges (one forward, one backward) between two nodes. *
* Physically, this is what happens -- make sure your rr_graph does it. *
* *
* I assume a minimum width transistor takes 1 unit of area. A double-width *
* transistor takes the twice the diffusion width, but the same spacing, so *
* I assume it takes 1.5x the area of a minimum-width transitor. */
if(directionality == BI_DIRECTIONAL)
{
count_bidir_routing_transistors(num_switch, R_minW_nmos,
R_minW_pmos);
}
else
{
assert(directionality == UNI_DIRECTIONAL);
count_unidir_routing_transistors(segment_inf, R_minW_nmos,
R_minW_pmos);
}
}
void
count_bidir_routing_transistors(int num_switch,
float R_minW_nmos,
float R_minW_pmos)
{
/* Tri-state buffers are designed as a buffer followed by a pass transistor. *
* I make Rbuffer = Rpass_transitor = 1/2 Rtri-state_buffer. *
* I make the pull-up and pull-down sides of the buffer the same strength -- *
* i.e. I make the p transistor R_minW_pmos / R_minW_nmos wider than the n *
* transistor. *
* *
* I generate two area numbers in this routine: ntrans_sharing and *
* ntrans_no_sharing. ntrans_sharing exactly reflects what the timing *
* analyzer, etc. works with -- each switch is a completely self contained *
* pass transistor or tri-state buffer. In the case of tri-state buffers *
* this is rather pessimisitic. The inverter chain part of the buffer (as *
* opposed to the pass transistor + SRAM output part) can be shared by *
* several switches in the same location. Obviously all the switches from *
* an OPIN can share one buffer. Also, CHANX and CHANY switches at the same *
* spot (i,j) on a single segment can share a buffer. For a more realistic *
* area number I assume all buffered switches from a node that are at the *
* *same (i,j) location* can share one buffer. Only the lowest resistance *
* (largest) buffer is implemented. In practice, you might want to build *
* something that is 1.5x or 2x the largest buffer, so this may be a bit *
* optimistic (but I still think it's pretty reasonable). */
int *num_inputs_to_cblock; /* [0..num_rr_nodes-1], but all entries not */
/* corresponding to IPINs will be 0. */
boolean *cblock_counted; /* [0..max(nx,ny)] -- 0th element unused. */
float *shared_buffer_trans; /* [0..max_nx,ny)] */
float *unsharable_switch_trans, *sharable_switch_trans; /* [0..num_switch-1] */
t_rr_type from_rr_type, to_rr_type;
int from_node, to_node, iedge, num_edges, maxlen;
int iswitch, i, j, iseg, max_inputs_to_cblock;
float input_cblock_trans, shared_opin_buffer_trans;
const float trans_sram_bit = 6.;
/* Two variables below are the accumulator variables that add up all the *
* transistors in the routing. Make doubles so that they don't stop *
* incrementing once adding a switch makes a change of less than 1 part in *
* 10^7 to the total. If this still isn't good enough (adding 1 part in *
* 10^15 will still be thrown away), compute the transistor count in *
* "chunks", by adding up inodes 1 to 1000, 1001 to 2000 and then summing *
* the partial sums together. */
double ntrans_sharing, ntrans_no_sharing;
/* Buffers from the routing to the ipin cblock inputs, and from the ipin *
* cblock outputs to the logic block, respectively. Assume minimum size n *
* transistors, and ptransistors sized to make the pull-up R = pull-down R. */
float trans_track_to_cblock_buf;
float trans_cblock_to_lblock_buf;
ntrans_sharing = 0.;
ntrans_no_sharing = 0.;
max_inputs_to_cblock = 0;
/* Assume the two buffers below are 4x minimum drive strength (enough to *
* drive a fanout of up to 16 pretty nicely -- should cover a reasonable *
* wiring C plus the fanout. */
trans_track_to_cblock_buf =
trans_per_buf(R_minW_nmos / 4., R_minW_nmos, R_minW_pmos);
trans_cblock_to_lblock_buf =
trans_per_buf(R_minW_nmos / 4., R_minW_nmos, R_minW_pmos);
num_inputs_to_cblock = (int *)my_calloc(num_rr_nodes, sizeof(int));
maxlen = max(nx, ny) + 1;
cblock_counted = (boolean *) my_calloc(maxlen, sizeof(boolean));
shared_buffer_trans = (float *)my_calloc(maxlen, sizeof(float));
unsharable_switch_trans =
alloc_and_load_unsharable_switch_trans(num_switch, trans_sram_bit,
R_minW_nmos);
sharable_switch_trans =
alloc_and_load_sharable_switch_trans(num_switch, trans_sram_bit,
R_minW_nmos, R_minW_pmos);
for(from_node = 0; from_node < num_rr_nodes; from_node++)
{
from_rr_type = rr_node[from_node].type;
switch (from_rr_type)
{
case CHANX:
case CHANY:
num_edges = rr_node[from_node].num_edges;
for(iedge = 0; iedge < num_edges; iedge++)
{
to_node = rr_node[from_node].edges[iedge];
to_rr_type = rr_node[to_node].type;
switch (to_rr_type)
{
case CHANX:
case CHANY:
iswitch =
rr_node[from_node].switches[iedge];
if(switch_inf[iswitch].buffered)
{
iseg =
seg_index_of_sblock(from_node,
to_node);
shared_buffer_trans[iseg] =
max(shared_buffer_trans[iseg],
sharable_switch_trans
[iswitch]);
ntrans_no_sharing +=
unsharable_switch_trans
[iswitch] +
sharable_switch_trans
[iswitch];
ntrans_sharing +=
unsharable_switch_trans
[iswitch];
}
else if(from_node < to_node)
{
/* Pass transistor shared by two edges -- only count once. *
* Also, no part of a pass transistor is sharable. */
ntrans_no_sharing +=
unsharable_switch_trans
[iswitch];
ntrans_sharing +=
unsharable_switch_trans
[iswitch];
}
break;
case IPIN:
num_inputs_to_cblock[to_node]++;
max_inputs_to_cblock =
max(max_inputs_to_cblock,
num_inputs_to_cblock[to_node]);
iseg =
seg_index_of_cblock(from_rr_type,
to_node);
if(cblock_counted[iseg] == FALSE)
{
cblock_counted[iseg] = TRUE;
ntrans_sharing +=
trans_track_to_cblock_buf;
ntrans_no_sharing +=
trans_track_to_cblock_buf;
}
break;
default:
printf
("Error in count_routing_transistors: Unexpected \n"
"connection from node %d (type %d) to node %d (type %d).\n",
from_node, from_rr_type, to_node,
to_rr_type);
exit(1);
break;
} /* End switch on to_rr_type. */
} /* End for each edge. */
/* Now add in the shared buffer transistors, and reset some flags. */
if(from_rr_type == CHANX)
{
for(i = rr_node[from_node].xlow - 1;
i <= rr_node[from_node].xhigh; i++)
{
ntrans_sharing += shared_buffer_trans[i];
shared_buffer_trans[i] = 0.;
}
for(i = rr_node[from_node].xlow;
i <= rr_node[from_node].xhigh; i++)
cblock_counted[i] = FALSE;
}
else
{ /* CHANY */
for(j = rr_node[from_node].ylow - 1;
j <= rr_node[from_node].yhigh; j++)
{
ntrans_sharing += shared_buffer_trans[j];
shared_buffer_trans[j] = 0.;
}
for(j = rr_node[from_node].ylow;
j <= rr_node[from_node].yhigh; j++)
cblock_counted[j] = FALSE;
}
break;
case OPIN:
num_edges = rr_node[from_node].num_edges;
shared_opin_buffer_trans = 0.;
for(iedge = 0; iedge < num_edges; iedge++)
{
iswitch = rr_node[from_node].switches[iedge];
ntrans_no_sharing +=
unsharable_switch_trans[iswitch] +
sharable_switch_trans[iswitch];
ntrans_sharing +=
unsharable_switch_trans[iswitch];
shared_opin_buffer_trans =
max(shared_opin_buffer_trans,
sharable_switch_trans[iswitch]);
}
ntrans_sharing += shared_opin_buffer_trans;
break;
default:
break;
} /* End switch on from_rr_type */
} /* End for all nodes */
free(cblock_counted);
free(shared_buffer_trans);
free(unsharable_switch_trans);
free(sharable_switch_trans);
/* Now add in the input connection block transistors. */
input_cblock_trans = get_cblock_trans(num_inputs_to_cblock,
max_inputs_to_cblock,
trans_cblock_to_lblock_buf,
trans_sram_bit);
free(num_inputs_to_cblock);
ntrans_sharing += input_cblock_trans;
ntrans_no_sharing += input_cblock_trans;
printf("\nRouting area (in minimum width transistor areas):\n");
printf
("Assuming no buffer sharing (pessimistic). Total: %#g Per logic tile: "
"%#g\n", ntrans_no_sharing, ntrans_no_sharing / (float)(nx * ny));
printf
("Assuming buffer sharing (slightly optimistic). Total: %#g Per logic tile: "
"%#g\n\n", ntrans_sharing, ntrans_sharing / (float)(nx * ny));
}
void
count_unidir_routing_transistors(t_segment_inf * segment_inf,
float R_minW_nmos,
float R_minW_pmos)
{
boolean *cblock_counted; /* [0..max(nx,ny)] -- 0th element unused. */
int *num_inputs_to_cblock; /* [0..num_rr_nodes-1], but all entries not */
/* corresponding to IPINs will be 0. */
t_rr_type from_rr_type, to_rr_type;
int i, j, iseg, from_node, to_node, iedge, num_edges, maxlen;
int max_inputs_to_cblock, cost_index, seg_type, switch_type;
float input_cblock_trans;
const float trans_sram_bit = 6.;
/* Two variables below are the accumulator variables that add up all the *
* transistors in the routing. Make doubles so that they don't stop *
* incrementing once adding a switch makes a change of less than 1 part in *
* 10^7 to the total. If this still isn't good enough (adding 1 part in *
* 10^15 will still be thrown away), compute the transistor count in *
* "chunks", by adding up inodes 1 to 1000, 1001 to 2000 and then summing *
* the partial sums together. */
double ntrans;
/* Buffers from the routing to the ipin cblock inputs, and from the ipin *
* cblock outputs to the logic block, respectively. Assume minimum size n *
* transistors, and ptransistors sized to make the pull-up R = pull-down R. */
float trans_track_to_cblock_buf;
float trans_cblock_to_lblock_buf;
max_inputs_to_cblock = 0;
/* Assume the two buffers below are 4x minimum drive strength (enough to *
* drive a fanout of up to 16 pretty nicely -- should cover a reasonable *
* wiring C plus the fanout. */
trans_track_to_cblock_buf =
trans_per_buf(R_minW_nmos / 4., R_minW_nmos, R_minW_pmos);
trans_cblock_to_lblock_buf =
trans_per_buf(R_minW_nmos / 4., R_minW_nmos, R_minW_pmos);
num_inputs_to_cblock = (int *)my_calloc(num_rr_nodes, sizeof(int));
maxlen = max(nx, ny) + 1;
cblock_counted = (boolean *) my_calloc(maxlen, sizeof(boolean));
ntrans = 0;
for(from_node = 0; from_node < num_rr_nodes; from_node++)
{
from_rr_type = rr_node[from_node].type;
switch (from_rr_type)
{
case CHANX:
case CHANY:
num_edges = rr_node[from_node].num_edges;
cost_index = rr_node[from_node].cost_index;
seg_type = rr_indexed_data[cost_index].seg_index;
switch_type = segment_inf[seg_type].wire_switch;
assert(segment_inf[seg_type].wire_switch ==
segment_inf[seg_type].opin_switch);
assert(switch_inf[switch_type].mux_trans_size >= 1); /* can't be smaller than min sized transistor */
assert(rr_node[from_node].num_opin_drivers == 0); /* undir has no opin or wire switches */
assert(rr_node[from_node].num_wire_drivers == 0); /* undir has no opin or wire switches */
/* Each wire segment begins with a multipexer followed by a driver for unidirectional */
/* Each multiplexer contains all the fan-in to that routing node */
/* Add up area of multiplexer */
ntrans +=
trans_per_mux(rr_node[from_node].fan_in,
trans_sram_bit,
switch_inf[switch_type].mux_trans_size);
/* Add up area of buffer */
if(switch_inf[switch_type].buf_size == 0)
{
ntrans +=
trans_per_buf(switch_inf[switch_type].R,
R_minW_nmos, R_minW_pmos);
}
else
{
ntrans += switch_inf[switch_type].buf_size;
}
for(iedge = 0; iedge < num_edges; iedge++)
{
to_node = rr_node[from_node].edges[iedge];
to_rr_type = rr_node[to_node].type;
switch (to_rr_type)
{
case CHANX:
case CHANY:
break;
case IPIN:
num_inputs_to_cblock[to_node]++;
max_inputs_to_cblock =
max(max_inputs_to_cblock,
num_inputs_to_cblock[to_node]);
iseg =
seg_index_of_cblock(from_rr_type,
to_node);
if(cblock_counted[iseg] == FALSE)
{
cblock_counted[iseg] = TRUE;
ntrans +=
trans_track_to_cblock_buf;
}
break;
default:
printf
("Error in count_routing_transistors: Unexpected \n"
"connection from node %d (type %d) to node %d (type %d).\n",
from_node, from_rr_type, to_node,
to_rr_type);
exit(1);
break;
} /* End switch on to_rr_type. */
} /* End for each edge. */
/* Reset some flags */
if(from_rr_type == CHANX)
{
for(i = rr_node[from_node].xlow;
i <= rr_node[from_node].xhigh; i++)
cblock_counted[i] = FALSE;
}
else
{ /* CHANY */
for(j = rr_node[from_node].ylow;
j <= rr_node[from_node].yhigh; j++)
cblock_counted[j] = FALSE;
}
break;
case OPIN:
break;
default:
break;
} /* End switch on from_rr_type */
} /* End for all nodes */
/* Now add in the input connection block transistors. */
input_cblock_trans = get_cblock_trans(num_inputs_to_cblock,
max_inputs_to_cblock,
trans_cblock_to_lblock_buf,
trans_sram_bit);
free(cblock_counted);
free(num_inputs_to_cblock);
ntrans += input_cblock_trans;
printf("\nRouting area (in minimum width transistor areas):\n");
printf("Total Routing Area: %#g Per logic tile: %#g\n", ntrans,
ntrans / (float)(nx * ny));
}
static float
get_cblock_trans(int *num_inputs_to_cblock,
int max_inputs_to_cblock,
float trans_cblock_to_lblock_buf,
float trans_sram_bit)
{
/* Computes the transistors in the input connection block multiplexers and *
* the buffers from connection block outputs to the logic block input pins. *
* For speed, I precompute the number of transistors in the multiplexers of *
* interest. */
float *trans_per_cblock; /* [0..max_inputs_to_cblock] */
float trans_count;
int i, num_inputs;
trans_per_cblock = (float *)my_malloc((max_inputs_to_cblock + 1) *
sizeof(float));
trans_per_cblock[0] = 0.; /* i.e., not an IPIN or no inputs */
/* With one or more inputs, add the mux and output buffer. I add the output *
* buffer even when the number of inputs = 1 (i.e. no mux) because I assume *
* I need the drivability just for metal capacitance. */
for(i = 1; i <= max_inputs_to_cblock; i++)
trans_per_cblock[i] =
trans_per_mux(i, trans_sram_bit,
ipin_mux_trans_size) + trans_cblock_to_lblock_buf;
trans_count = 0.;
for(i = 0; i < num_rr_nodes; i++)
{
num_inputs = num_inputs_to_cblock[i];
trans_count += trans_per_cblock[num_inputs];
}
free(trans_per_cblock);
return (trans_count);
}
static float *
alloc_and_load_unsharable_switch_trans(int num_switch,
float trans_sram_bit,
float R_minW_nmos)
{
/* Loads up an array that says how many transistors are needed to implement *
* the unsharable portion of each switch type. The SRAM bit of a switch and *
* the pass transistor (forming either the entire switch or the output part *
* of a tri-state buffer) are both unsharable. */
float *unsharable_switch_trans, Rpass;
int i;
unsharable_switch_trans = (float *)my_malloc(num_switch * sizeof(float));
for(i = 0; i < num_switch; i++)
{
if(switch_inf[i].buffered == FALSE)
{
Rpass = switch_inf[i].R;
}
else
{ /* Buffer. Set Rpass = Rbuf = 1/2 Rtotal. */
Rpass = switch_inf[i].R / 2.;
}
unsharable_switch_trans[i] = trans_per_R(Rpass, R_minW_nmos) +
trans_sram_bit;
}
return (unsharable_switch_trans);
}
static float *
alloc_and_load_sharable_switch_trans(int num_switch,
float trans_sram_bit,
float R_minW_nmos,
float R_minW_pmos)
{
/* Loads up an array that says how many transistor are needed to implement *
* the sharable portion of each switch type. The SRAM bit of a switch and *
* the pass transistor (forming either the entire switch or the output part *
* of a tri-state buffer) are both unsharable. Only the buffer part of a *
* buffer switch is sharable. */
float *sharable_switch_trans, Rbuf;
int i;
sharable_switch_trans = (float *)my_malloc(num_switch * sizeof(float));
for(i = 0; i < num_switch; i++)
{
if(switch_inf[i].buffered == FALSE)
{
sharable_switch_trans[i] = 0.;
}
else
{ /* Buffer. Set Rbuf = Rpass = 1/2 Rtotal. */
Rbuf = switch_inf[i].R / 2.;
sharable_switch_trans[i] =
trans_per_buf(Rbuf, R_minW_nmos, R_minW_pmos);
}
}
return (sharable_switch_trans);
}
static float
trans_per_buf(float Rbuf,
float R_minW_nmos,
float R_minW_pmos)
{
/* Returns the number of minimum width transistor area equivalents needed to *
* implement this buffer. Assumes a stage ratio of 4, and equal strength *
* pull-up and pull-down paths. */
int num_stage, istage;
float trans_count, stage_ratio, Rstage;
if(Rbuf > 0.6 * R_minW_nmos || Rbuf <= 0.)
{ /* Use a single-stage buffer */
trans_count = trans_per_R(Rbuf, R_minW_nmos) + trans_per_R(Rbuf,
R_minW_pmos);
}
else
{ /* Use a multi-stage buffer */
/* Target stage ratio = 4. 1 minimum width buffer, then num_stage bigger *
* ones. */
num_stage = nint(log10(R_minW_nmos / Rbuf) / log10(4.));
num_stage = max(num_stage, 1);
stage_ratio = pow(R_minW_nmos / Rbuf, 1. / (float)num_stage);
Rstage = R_minW_nmos;
trans_count = 0.;
for(istage = 0; istage <= num_stage; istage++)
{
trans_count +=
trans_per_R(Rstage, R_minW_nmos) + trans_per_R(Rstage,
R_minW_pmos);
Rstage /= stage_ratio;
}
}
return (trans_count);
}
static float
trans_per_mux(int num_inputs,
float trans_sram_bit,
float pass_trans_area)
{
/* Returns the number of transistors needed to build a pass transistor mux. *
* DOES NOT include input buffers or any output buffer. *
* Attempts to select smart multiplexer size depending on number of inputs *
* For multiplexers with inputs 4 or less, one level is used, more has two *
* levels. */
float ntrans, sram_trans, pass_trans;
int num_second_stage_trans;
if(num_inputs <= 1)
{
return (0);
}
else if(num_inputs == 2)
{
pass_trans = 2 * pass_trans_area;
sram_trans = 1 * trans_sram_bit;
}
else if(num_inputs <= 4)
{
/* One-hot encoding */
pass_trans = num_inputs * pass_trans_area;
sram_trans = num_inputs * trans_sram_bit;
}
else
{
/* This is a large multiplexer so design it using a two-level multiplexer *
* + 0.00001 is to make sure exact square roots two don't get rounded down *
* to one lower level. */
num_second_stage_trans = floor(sqrt(num_inputs) + 0.00001);
pass_trans =
(num_inputs + num_second_stage_trans) * pass_trans_area;
sram_trans =
(ceil((float)num_inputs / num_second_stage_trans - 0.00001) +
num_second_stage_trans) * trans_sram_bit;
if(num_second_stage_trans == 2)
{
/* Can use one-bit instead of a two-bit one-hot encoding for the second stage */
/* Eliminates one sram bit counted earlier */
sram_trans -= 1 * trans_sram_bit;
}
}
ntrans = pass_trans + sram_trans;
return (ntrans);
}
static float
trans_per_R(float Rtrans,
float R_minW_trans)
{
/* Returns the number of minimum width transistor area equivalents needed *
* to make a transistor with Rtrans, given that the resistance of a minimum *
* width transistor of this type is R_minW_trans. */
float trans_area;
if(Rtrans <= 0.) /* Assume resistances are nonsense -- use min. width */
return (1.);
if(Rtrans >= R_minW_trans)
return (1.);
/* Area = minimum width area (1) + 0.5 for each additional unit of width. *
* The 50% factor takes into account the "overlapping" that occurs in *
* horizontally-paralleled transistors, and the need for only one spacing, *
* not two (i.e. two min W transistors need two spaces; a 2W transistor *
* needs only 1). */
trans_area = 0.5 * R_minW_trans / Rtrans + 0.5;
return (trans_area);
}