blob: 8b76c0468362a5717fdf44ee23ff3cb1b8a7172d [file] [log] [blame]
#include <ctime>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <memory>
#include <numeric>
#include <iomanip>
#include "tatum/util/tatum_assert.hpp"
#include "tatum/timing_analyzers.hpp"
#include "tatum/graph_walkers.hpp"
#include "tatum/analyzer_factory.hpp"
#include "tatum/TimingGraph.hpp"
#include "tatum/TimingConstraints.hpp"
#include "tatum/TimingReporter.hpp"
#include "tatum/report/NodeNumNameResolver.hpp"
#include "tatum/timing_paths.hpp"
#include "tatum/delay_calc/FixedDelayCalculator.hpp"
#include "tatum/report/graphviz_dot_writer.hpp"
#include "tatum/base/sta_util.hpp"
#include "tatum/echo_writer.hpp"
#include "golden_reference.hpp"
#include "echo_loader.hpp"
#include "verify.hpp"
#include "util.hpp"
#include "profile.hpp"
#define NUM_SERIAL_RUNS 30
#define NUM_PARALLEL_RUNS (1*NUM_SERIAL_RUNS)
//Should we optimize the timing graph memory layout?
//#define OPTIMIZE_GRAPH_LAYOUT
//Should we print out tag related object size info
#define PRINT_TAG_SIZES
//Do we dump an echo file?
#define ECHO
typedef std::chrono::duration<double> dsec;
typedef std::chrono::high_resolution_clock Clock;
using std::cout;
using std::endl;
using tatum::Time;
using tatum::TimingTag;
using tatum::TimingTags;
using tatum::TimingGraph;
using tatum::TimingConstraints;
using tatum::NodeId;
using tatum::EdgeId;
using tatum::DomainId;
double median(std::vector<double> values);
double arithmean(std::vector<double> values);
int main(int argc, char** argv) {
if(argc != 2) {
cout << "Usage: " << argv[0] << " tg_echo_file" << endl;
return 1;
}
int exit_code = 0;
struct timespec prog_start, load_start, verify_start;
struct timespec prog_end, load_end, verify_end;
clock_gettime(CLOCK_MONOTONIC, &prog_start);
#ifdef PRINT_TAG_SIZES
cout << "Time class sizeof = " << sizeof(Time) << " bytes. Time Vec Width: " << TIME_VEC_WIDTH << endl;
cout << "Time class alignof = " << alignof(Time) << endl;
cout << "TimingTag class sizeof = " << sizeof(TimingTag) << " bytes." << endl;
cout << "TimingTag class alignof = " << alignof(TimingTag) << " bytes." << endl;
cout << "TimingTags class sizeof = " << sizeof(TimingTags) << " bytes." << endl;
cout << "TimingTags class alignof = " << alignof(TimingTags) << " bytes." << endl;
cout << "NodeId class sizeof = " << sizeof(tatum::NodeId) << " bytes." << endl;
cout << "NodeId class alignof = " << alignof(tatum::NodeId) << " bytes." << endl;
cout << "EdgeId class sizeof = " << sizeof(tatum::EdgeId) << " bytes." << endl;
cout << "EdgeId class alignof = " << alignof(tatum::EdgeId) << " bytes." << endl;
cout << "DomainId class sizeof = " << sizeof(tatum::DomainId) << " bytes." << endl;
cout << "DomainId class alignof = " << alignof(tatum::DomainId) << " bytes." << endl;
cout << "TagType class sizeof = " << sizeof(tatum::TagType) << " bytes." << endl;
cout << "TagType class alignof = " << alignof(tatum::TagType) << " bytes." << endl;
cout << "NodeType class sizeof = " << sizeof(tatum::NodeType) << " bytes." << endl;
cout << "NodeType class alignof = " << alignof(tatum::NodeType) << " bytes." << endl;
#endif
//Raw outputs of parser
std::shared_ptr<TimingGraph> timing_graph;
std::shared_ptr<TimingConstraints> timing_constraints;
std::shared_ptr<tatum::FixedDelayCalculator> delay_calculator;
std::shared_ptr<GoldenReference> golden_reference;
{
clock_gettime(CLOCK_MONOTONIC, &load_start);
//Load the echo file
EchoLoader loader;
if(argv[1] == std::string("-")) {
tatum_parse_file(stdin, loader);
} else {
tatum_parse_filename(argv[1], loader);
}
timing_graph = loader.timing_graph();
timing_graph->set_allow_dangling_combinational_nodes(true);
timing_constraints = loader.timing_constraints();
delay_calculator = loader.delay_calculator();
golden_reference = loader.golden_reference();
clock_gettime(CLOCK_MONOTONIC, &load_end);
cout << "Loading took: " << tatum::time_sec(load_start, load_end) << " sec" << endl;
cout << endl;
}
timing_constraints->print_constraints();
timing_graph->levelize();
timing_graph->validate();
#ifdef OPTIMIZE_GRAPH_LAYOUT
auto id_maps = timing_graph->optimize_layout();
remap_delay_calculator(*timing_graph, *delay_calculator, id_maps.edge_id_map);
timing_constraints->remap_nodes(id_maps.node_id_map);
golden_reference->remap_nodes(id_maps.node_id_map);
#endif
/*
*timing_constraints->print();
*/
int n_histo_bins = 10;
tatum::print_level_histogram(*timing_graph, n_histo_bins);
tatum::print_node_fanin_histogram(*timing_graph, n_histo_bins);
tatum::print_node_fanout_histogram(*timing_graph, n_histo_bins);
cout << endl;
/*
*cout << "Timing Graph" << endl;
*print_timing_graph(timing_graph);
*cout << endl;
*/
/*
*cout << "Levelization" << endl;
*print_levelization(timing_graph);
*cout << endl;
*/
#ifdef ECHO
std::ofstream ofs("timing_graph.echo");
tatum::write_timing_graph(ofs, *timing_graph);
tatum::write_timing_constraints(ofs, *timing_constraints);
tatum::write_delay_model(ofs, *timing_graph, *delay_calculator);
ofs.flush();
#endif
//Make all the analyzer types to test templates
std::shared_ptr<tatum::TimingAnalyzer> setup_analyzer = tatum::AnalyzerFactory<tatum::SetupAnalysis>::make(*timing_graph, *timing_constraints, *delay_calculator);
std::shared_ptr<tatum::TimingAnalyzer> hold_analyzer = tatum::AnalyzerFactory<tatum::SetupAnalysis>::make(*timing_graph, *timing_constraints, *delay_calculator);
std::shared_ptr<tatum::TimingAnalyzer> setup_hold_analyzer = tatum::AnalyzerFactory<tatum::SetupHoldAnalysis>::make(*timing_graph, *timing_constraints, *delay_calculator);
//Create the timing analyzer
std::shared_ptr<tatum::TimingAnalyzer> serial_analyzer = tatum::AnalyzerFactory<tatum::SetupHoldAnalysis>::make(*timing_graph, *timing_constraints, *delay_calculator);
auto serial_setup_analyzer = std::dynamic_pointer_cast<tatum::SetupTimingAnalyzer>(serial_analyzer);
auto serial_hold_analyzer = std::dynamic_pointer_cast<tatum::HoldTimingAnalyzer>(serial_analyzer);
//Performance variables
float serial_verify_time = 0.;
size_t serial_tags_verified = 0;
std::map<std::string,std::vector<double>> serial_prof_data;
{
cout << "Running Serial Analysis " << NUM_SERIAL_RUNS << " times" << endl;
serial_prof_data = profile(NUM_SERIAL_RUNS, serial_analyzer);
cout << "\n";
if(serial_analyzer->num_unconstrained_startpoints() > 0) {
cout << "Warning: " << serial_analyzer->num_unconstrained_startpoints() << " sources are unconstrained\n";
}
if(serial_analyzer->num_unconstrained_endpoints() > 0) {
cout << "Warning: " << serial_analyzer->num_unconstrained_endpoints() << " sinks are unconstrained\n";
}
tatum::NodeNumResolver name_resolver(*timing_graph);
tatum::TimingReporter timing_reporter(name_resolver, *timing_graph, *timing_constraints);
auto dot_writer = make_graphviz_dot_writer(*timing_graph, *delay_calculator);
std::vector<NodeId> nodes;
//nodes = find_transitively_connected_nodes(*timing_graph, {NodeId(6768)});
//dot_writer.set_nodes_to_dump(nodes);
std::shared_ptr<tatum::SetupTimingAnalyzer> echo_setup_analyzer = std::dynamic_pointer_cast<tatum::SetupTimingAnalyzer>(serial_analyzer);
if(echo_setup_analyzer) {
//write_dot_file_setup("tg_setup_annotated.dot", *timing_graph, *delay_calculator, *echo_setup_analyzer, nodes);
dot_writer.write_dot_file("tg_setup_annotated.dot", *echo_setup_analyzer);
timing_reporter.report_timing_setup("report_timing.setup.rpt", *echo_setup_analyzer);
timing_reporter.report_unconstrained_setup("report_unconstrained_timing.setup.rpt", *echo_setup_analyzer);
}
std::shared_ptr<tatum::HoldTimingAnalyzer> echo_hold_analyzer = std::dynamic_pointer_cast<tatum::HoldTimingAnalyzer>(serial_analyzer);
if(echo_hold_analyzer) {
//write_dot_file_hold("tg_hold_annotated.dot", *timing_graph, *delay_calculator, *echo_hold_analyzer, nodes);
dot_writer.write_dot_file("tg_hold_annotated.dot", *echo_hold_analyzer);
timing_reporter.report_timing_hold("report_timing.hold.rpt", *echo_hold_analyzer);
timing_reporter.report_unconstrained_hold("report_unconstrained_timing.hold.rpt", *echo_hold_analyzer);
}
//Verify
clock_gettime(CLOCK_MONOTONIC, &verify_start);
auto res = verify_analyzer(*timing_graph, serial_analyzer, *golden_reference);
serial_tags_verified = res.first;
if(!res.second) {
cout << "Verification failed!\n";
exit_code = 1;
}
clock_gettime(CLOCK_MONOTONIC, &verify_end);
serial_verify_time += tatum::time_sec(verify_start, verify_end);
cout << endl;
cout << "Serial Analysis took " << std::setprecision(6) << std::setw(6) << arithmean(serial_prof_data["analysis_sec"])*NUM_SERIAL_RUNS << " sec";
if(serial_prof_data["analysis_sec"].size() > 0) {
cout << " AVG: " << arithmean(serial_prof_data["analysis_sec"]);
cout << " Median: " << median(serial_prof_data["analysis_sec"]);
cout << " Min: " << *std::min_element(serial_prof_data["analysis_sec"].begin(), serial_prof_data["analysis_sec"].end());
cout << " Max: " << *std::max_element(serial_prof_data["analysis_sec"].begin(), serial_prof_data["analysis_sec"].end());
}
cout << endl;
cout << "\tReset Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["reset_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["reset_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tArr Pre-traversal Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["arrival_pre_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["arrival_pre_traversal_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tReq Pre-traversal Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["required_pre_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["required_pre_traversal_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tArr traversal Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["arrival_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["arrival_traversal_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tReq traversal Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["required_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["required_traversal_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tUpdate slack Median: " << std::setprecision(6) << std::setw(6) << median(serial_prof_data["update_slack_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(serial_prof_data["update_slack_sec"])/median(serial_prof_data["analysis_sec"]) << ")" << endl;
cout << "Verifying Serial Analysis took: " << serial_verify_time << " sec" << endl;
if(serial_tags_verified != golden_reference->num_tags() && serial_tags_verified != golden_reference->num_tags() / 2) {
//Potentially alow / 2 for setup only analysis from setup/hold golden
cout << "WARNING: Expected tags (" << golden_reference->num_tags() << ") differs from tags checked (" << serial_tags_verified << ") , verification may not have occured!" << endl;
} else {
cout << "\tVerified " << serial_tags_verified << " tags (expected " << golden_reference->num_tags() << " or " << golden_reference->num_tags()/2 << ") accross " << timing_graph->nodes().size() << " nodes" << endl;
}
cout << endl;
cout << endl << "Net Serial Analysis elapsed time: " << serial_analyzer->get_profiling_data("total_analysis_sec") << " sec over " << serial_analyzer->get_profiling_data("num_full_updates") << " full updates" << endl;
}
#ifdef ECHO
tatum::write_analysis_result(ofs, *timing_graph, serial_analyzer);
ofs.flush();
#endif
cout << endl;
#if NUM_PARALLEL_RUNS > 0
std::shared_ptr<tatum::TimingAnalyzer> parallel_analyzer = tatum::AnalyzerFactory<tatum::SetupHoldAnalysis,tatum::ParallelWalker>::make(*timing_graph, *timing_constraints, *delay_calculator);
auto parallel_setup_analyzer = std::dynamic_pointer_cast<tatum::SetupTimingAnalyzer>(parallel_analyzer);
auto parallel_hold_analyzer = std::dynamic_pointer_cast<tatum::HoldTimingAnalyzer>(parallel_analyzer);
float parallel_verify_time = 0;
size_t parallel_tags_verified = 0;
std::map<std::string,std::vector<double>> parallel_prof_data;
{
cout << "Running Parrallel Analysis " << NUM_PARALLEL_RUNS << " times" << endl;
//Analyze
parallel_prof_data = profile(NUM_PARALLEL_RUNS, parallel_analyzer);
//Verify
clock_gettime(CLOCK_MONOTONIC, &verify_start);
cout << "\n";
auto res = verify_analyzer(*timing_graph, parallel_analyzer, *golden_reference);
parallel_tags_verified = res.first;
if(!res.second) {
cout << "Verification failed!\n";
exit_code = 1;
}
clock_gettime(CLOCK_MONOTONIC, &verify_end);
parallel_verify_time += tatum::time_sec(verify_start, verify_end);
cout << endl;
cout << "Parallel Analysis took " << std::setprecision(6) << std::setw(6) << arithmean(parallel_prof_data["analysis_sec"])*NUM_SERIAL_RUNS << " sec";
if(parallel_prof_data["analysis_sec"].size() > 0) {
cout << " AVG: " << arithmean(parallel_prof_data["analysis_sec"]);
cout << " Median: " << median(parallel_prof_data["analysis_sec"]);
cout << " Min: " << *std::min_element(parallel_prof_data["analysis_sec"].begin(), parallel_prof_data["analysis_sec"].end());
cout << " Max: " << *std::max_element(parallel_prof_data["analysis_sec"].begin(), parallel_prof_data["analysis_sec"].end());
}
cout << endl;
cout << "\tReset Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["reset_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["reset_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tArr Pre-traversal Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["arrival_pre_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["arrival_pre_traversal_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tReq Pre-traversal Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["required_pre_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["required_pre_traversal_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tArr traversal Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["arrival_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["arrival_traversal_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tReq traversal Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["required_traversal_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["required_traversal_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "\tUpdate slack Median: " << std::setprecision(6) << std::setw(6) << median(parallel_prof_data["update_slack_sec"]) << " s";
cout << " (" << std::setprecision(2) << median(parallel_prof_data["update_slack_sec"])/median(parallel_prof_data["analysis_sec"]) << ")" << endl;
cout << "Verifying Parallel Analysis took: " << parallel_verify_time<< " sec" << endl;
if(parallel_tags_verified != golden_reference->num_tags() && parallel_tags_verified != golden_reference->num_tags()/2) {
//Potentially alow / 2 for setup only analysis from setup/hold golden
cout << "WARNING: Expected tags (" << golden_reference->num_tags() << ") differs from tags checked (" << serial_tags_verified << ") , verification may not have occured!" << endl;
} else {
cout << "\tVerified " << serial_tags_verified << " tags (expected " << golden_reference->num_tags() << " or " << golden_reference->num_tags()/2 << ") accross " << timing_graph->nodes().size() << " nodes" << endl;
}
}
cout << endl;
cout << "Parallel Speed-Up: " << std::fixed << median(serial_prof_data["analysis_sec"]) / median(parallel_prof_data["analysis_sec"]) << "x" << endl;
cout << "\t Reset: " << std::fixed << median(serial_prof_data["reset_sec"]) / median(parallel_prof_data["reset_sec"]) << "x" << endl;
cout << "\tArr Pre-traversal: " << std::fixed << median(serial_prof_data["arrival_pre_traversal_sec"]) / median(parallel_prof_data["arrival_pre_traversal_sec"]) << "x" << endl;
cout << "\tReq Pre-traversal: " << std::fixed << median(serial_prof_data["required_pre_traversal_sec"]) / median(parallel_prof_data["required_pre_traversal_sec"]) << "x" << endl;
cout << "\t Arr-traversal: " << std::fixed << median(serial_prof_data["arrival_traversal_sec"]) / median(parallel_prof_data["arrival_traversal_sec"]) << "x" << endl;
cout << "\t Req-traversal: " << std::fixed << median(serial_prof_data["required_traversal_sec"]) / median(parallel_prof_data["required_traversal_sec"]) << "x" << endl;
cout << "\t Update-slack: " << std::fixed << median(serial_prof_data["update_slack_sec"]) / median(parallel_prof_data["update_slack_sec"]) << "x" << endl;
cout << endl;
cout << endl << "Net Parallel Analysis elapsed time: " << parallel_analyzer->get_profiling_data("total_analysis_sec") << " sec over " << parallel_analyzer->get_profiling_data("num_full_updates") << " full updates" << endl;
#endif //NUM_PARALLEL_RUNS
//Tag stats
if(serial_setup_analyzer) {
print_setup_tags_histogram(*timing_graph, *serial_setup_analyzer);
}
if(serial_hold_analyzer) {
print_hold_tags_histogram(*timing_graph, *serial_hold_analyzer);
}
//Critical paths
cout << "\nCritical Paths:\n";
auto cpds = find_critical_paths(*timing_graph, *timing_constraints, *serial_setup_analyzer);
for(auto cpd : cpds) {
cout << " " << cpd.launch_domain() << " -> " << cpd.capture_domain() << ": " << std::scientific << cpd.delay() << "\n";
}
clock_gettime(CLOCK_MONOTONIC, &prog_end);
cout << endl << "Total time: " << tatum::time_sec(prog_start, prog_end) << " sec" << endl;
return exit_code;
}
double median(std::vector<double> values) {
std::sort(values.begin(), values.end());
if(values.size() % 2 == 0) {
return(values[values.size() / 2 - 1] + values[values.size() / 2]) / 2;
} else {
return values[values.size() / 2];
}
}
double arithmean(std::vector<double> values) {
return std::accumulate(values.begin(), values.end(), 0.) / values.size();
}