blob: 552cba7f3e27337f756a334931d5568744b7dc87 [file] [log] [blame]
/**CFile****************************************************************
FileName [abcBalance.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Performs global balancing of the AIG by the number of levels.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcBalance.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static void Abc_NtkBalancePerform( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkAig, int fDuplicate, int fSelective, int fUpdateLevel );
static Abc_Obj_t * Abc_NodeBalance_rec( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, Vec_Vec_t * vStorage, int Level, int fDuplicate, int fSelective, int fUpdateLevel );
static Vec_Ptr_t * Abc_NodeBalanceCone( Abc_Obj_t * pNode, Vec_Vec_t * vSuper, int Level, int fDuplicate, int fSelective );
static int Abc_NodeBalanceCone_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, int fFirst, int fDuplicate, int fSelective );
static void Abc_NtkMarkCriticalNodes( Abc_Ntk_t * pNtk );
static Vec_Ptr_t * Abc_NodeBalanceConeExor( Abc_Obj_t * pNode );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Balances the AIG network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkBalance( Abc_Ntk_t * pNtk, int fDuplicate, int fSelective, int fUpdateLevel )
{
// extern void Abc_NtkHaigTranfer( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkNew );
Abc_Ntk_t * pNtkAig;
assert( Abc_NtkIsStrash(pNtk) );
// compute the required times
if ( fSelective )
{
Abc_NtkStartReverseLevels( pNtk, 0 );
Abc_NtkMarkCriticalNodes( pNtk );
}
// perform balancing
pNtkAig = Abc_NtkStartFrom( pNtk, ABC_NTK_STRASH, ABC_FUNC_AIG );
// transfer HAIG
// Abc_NtkHaigTranfer( pNtk, pNtkAig );
// perform balancing
Abc_NtkBalancePerform( pNtk, pNtkAig, fDuplicate, fSelective, fUpdateLevel );
Abc_NtkFinalize( pNtk, pNtkAig );
Abc_AigCleanup( (Abc_Aig_t *)pNtkAig->pManFunc );
// undo the required times
if ( fSelective )
{
Abc_NtkStopReverseLevels( pNtk );
Abc_NtkCleanMarkA( pNtk );
}
if ( pNtk->pExdc )
pNtkAig->pExdc = Abc_NtkDup( pNtk->pExdc );
// make sure everything is okay
if ( !Abc_NtkCheck( pNtkAig ) )
{
printf( "Abc_NtkBalance: The network check has failed.\n" );
Abc_NtkDelete( pNtkAig );
return NULL;
}
//Abc_NtkPrintCiLevels( pNtkAig );
return pNtkAig;
}
/**Function*************************************************************
Synopsis [Balances the AIG network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkBalancePerform( Abc_Ntk_t * pNtk, Abc_Ntk_t * pNtkAig, int fDuplicate, int fSelective, int fUpdateLevel )
{
ProgressBar * pProgress;
Vec_Vec_t * vStorage;
Abc_Obj_t * pNode;
int i;
// transfer level
Abc_NtkForEachCi( pNtk, pNode, i )
pNode->pCopy->Level = pNode->Level;
// set the level of PIs of AIG according to the arrival times of the old network
Abc_NtkSetNodeLevelsArrival( pNtk );
// allocate temporary storage for supergates
vStorage = Vec_VecStart( 10 );
// perform balancing of POs
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkCoNum(pNtk) );
if ( pNtk->nBarBufs == 0 )
{
Abc_NtkForEachCo( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
Abc_NodeBalance_rec( pNtkAig, Abc_ObjFanin0(pNode), vStorage, 0, fDuplicate, fSelective, fUpdateLevel );
}
}
else
{
Abc_NtkForEachLiPo( pNtk, pNode, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
Abc_NodeBalance_rec( pNtkAig, Abc_ObjFanin0(pNode), vStorage, 0, fDuplicate, fSelective, fUpdateLevel );
if ( i < pNtk->nBarBufs )
Abc_ObjFanout0(Abc_ObjFanout0(pNode))->Level = Abc_ObjFanin0(pNode)->Level;
}
}
Extra_ProgressBarStop( pProgress );
Vec_VecFree( vStorage );
}
/**Function*************************************************************
Synopsis [Finds the left bound on the next candidate to be paired.]
Description [The nodes in the array are in the decreasing order of levels.
The last node in the array has the smallest level. By default it would be paired
with the next node on the left. However, it may be possible to pair it with some
other node on the left, in such a way that the new node is shared. This procedure
finds the index of the left-most node, which can be paired with the last node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeBalanceFindLeft( Vec_Ptr_t * vSuper )
{
Abc_Obj_t * pNodeRight, * pNodeLeft;
int Current;
// if two or less nodes, pair with the first
if ( Vec_PtrSize(vSuper) < 3 )
return 0;
// set the pointer to the one before the last
Current = Vec_PtrSize(vSuper) - 2;
pNodeRight = (Abc_Obj_t *)Vec_PtrEntry( vSuper, Current );
// go through the nodes to the left of this one
for ( Current--; Current >= 0; Current-- )
{
// get the next node on the left
pNodeLeft = (Abc_Obj_t *)Vec_PtrEntry( vSuper, Current );
// if the level of this node is different, quit the loop
if ( Abc_ObjRegular(pNodeLeft)->Level != Abc_ObjRegular(pNodeRight)->Level )
break;
}
Current++;
// get the node, for which the equality holds
pNodeLeft = (Abc_Obj_t *)Vec_PtrEntry( vSuper, Current );
assert( Abc_ObjRegular(pNodeLeft)->Level == Abc_ObjRegular(pNodeRight)->Level );
return Current;
}
/**Function*************************************************************
Synopsis [Moves closer to the end the node that is best for sharing.]
Description [If there is no node with sharing, randomly chooses one of
the legal nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeBalancePermute( Abc_Ntk_t * pNtkNew, Vec_Ptr_t * vSuper, int LeftBound )
{
Abc_Obj_t * pNode1, * pNode2, * pNode3;
int RightBound, i;
// get the right bound
RightBound = Vec_PtrSize(vSuper) - 2;
assert( LeftBound <= RightBound );
if ( LeftBound == RightBound )
return;
// get the two last nodes
pNode1 = (Abc_Obj_t *)Vec_PtrEntry( vSuper, RightBound + 1 );
pNode2 = (Abc_Obj_t *)Vec_PtrEntry( vSuper, RightBound );
// find the first node that can be shared
for ( i = RightBound; i >= LeftBound; i-- )
{
pNode3 = (Abc_Obj_t *)Vec_PtrEntry( vSuper, i );
if ( Abc_AigAndLookup( (Abc_Aig_t *)pNtkNew->pManFunc, pNode1, pNode3 ) )
{
if ( pNode3 == pNode2 )
return;
Vec_PtrWriteEntry( vSuper, i, pNode2 );
Vec_PtrWriteEntry( vSuper, RightBound, pNode3 );
return;
}
}
/*
// we did not find the node to share, randomize choice
{
int Choice = rand() % (RightBound - LeftBound + 1);
pNode3 = Vec_PtrEntry( vSuper, LeftBound + Choice );
if ( pNode3 == pNode2 )
return;
Vec_PtrWriteEntry( vSuper, LeftBound + Choice, pNode2 );
Vec_PtrWriteEntry( vSuper, RightBound, pNode3 );
}
*/
}
/**Function*************************************************************
Synopsis [Rebalances the multi-input node rooted at pNodeOld.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeBalance_rec( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNodeOld, Vec_Vec_t * vStorage, int Level, int fDuplicate, int fSelective, int fUpdateLevel )
{
Abc_Aig_t * pMan = (Abc_Aig_t *)pNtkNew->pManFunc;
Abc_Obj_t * pNodeNew, * pNode1, * pNode2;
Vec_Ptr_t * vSuper;
int i, LeftBound;
assert( !Abc_ObjIsComplement(pNodeOld) );
// return if the result if known
if ( pNodeOld->pCopy )
return pNodeOld->pCopy;
assert( Abc_ObjIsNode(pNodeOld) );
// get the implication supergate
// Abc_NodeBalanceConeExor( pNodeOld );
vSuper = Abc_NodeBalanceCone( pNodeOld, vStorage, Level, fDuplicate, fSelective );
if ( vSuper->nSize == 0 )
{ // it means that the supergate contains two nodes in the opposite polarity
pNodeOld->pCopy = Abc_ObjNot(Abc_AigConst1(pNtkNew));
return pNodeOld->pCopy;
}
// for each old node, derive the new well-balanced node
for ( i = 0; i < vSuper->nSize; i++ )
{
pNodeNew = Abc_NodeBalance_rec( pNtkNew, Abc_ObjRegular((Abc_Obj_t *)vSuper->pArray[i]), vStorage, Level + 1, fDuplicate, fSelective, fUpdateLevel );
vSuper->pArray[i] = Abc_ObjNotCond( pNodeNew, Abc_ObjIsComplement((Abc_Obj_t *)vSuper->pArray[i]) );
}
if ( vSuper->nSize < 2 )
printf( "BUG!\n" );
// sort the new nodes by level in the decreasing order
Vec_PtrSort( vSuper, (int (*)(void))Abc_NodeCompareLevelsDecrease );
// balance the nodes
assert( vSuper->nSize > 1 );
while ( vSuper->nSize > 1 )
{
// find the left bound on the node to be paired
LeftBound = (!fUpdateLevel)? 0 : Abc_NodeBalanceFindLeft( vSuper );
// find the node that can be shared (if no such node, randomize choice)
Abc_NodeBalancePermute( pNtkNew, vSuper, LeftBound );
// pull out the last two nodes
pNode1 = (Abc_Obj_t *)Vec_PtrPop(vSuper);
pNode2 = (Abc_Obj_t *)Vec_PtrPop(vSuper);
Abc_VecObjPushUniqueOrderByLevel( vSuper, Abc_AigAnd(pMan, pNode1, pNode2) );
}
// make sure the balanced node is not assigned
assert( pNodeOld->pCopy == NULL );
// mark the old node with the new node
pNodeOld->pCopy = (Abc_Obj_t *)vSuper->pArray[0];
vSuper->nSize = 0;
// if ( Abc_ObjRegular(pNodeOld->pCopy) == Abc_AigConst1(pNtkNew) )
// printf( "Constant node\n" );
// assert( pNodeOld->Level >= Abc_ObjRegular(pNodeOld->pCopy)->Level );
return pNodeOld->pCopy;
}
/**Function*************************************************************
Synopsis [Collects the nodes in the cone delimited by fMarkA==1.]
Description [Returns -1 if the AND-cone has the same node in both polarities.
Returns 1 if the AND-cone has the same node in the same polarity. Returns 0
if the AND-cone has no repeated nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NodeBalanceCone( Abc_Obj_t * pNode, Vec_Vec_t * vStorage, int Level, int fDuplicate, int fSelective )
{
Vec_Ptr_t * vNodes;
int RetValue, i;
assert( !Abc_ObjIsComplement(pNode) );
// extend the storage
if ( Vec_VecSize( vStorage ) <= Level )
Vec_VecPush( vStorage, Level, 0 );
// get the temporary array of nodes
vNodes = Vec_VecEntry( vStorage, Level );
Vec_PtrClear( vNodes );
// collect the nodes in the implication supergate
RetValue = Abc_NodeBalanceCone_rec( pNode, vNodes, 1, fDuplicate, fSelective );
assert( vNodes->nSize > 1 );
// unmark the visited nodes
for ( i = 0; i < vNodes->nSize; i++ )
Abc_ObjRegular((Abc_Obj_t *)vNodes->pArray[i])->fMarkB = 0;
// if we found the node and its complement in the same implication supergate,
// return empty set of nodes (meaning that we should use constant-0 node)
if ( RetValue == -1 )
vNodes->nSize = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis [Collects the nodes in the cone delimited by fMarkA==1.]
Description [Returns -1 if the AND-cone has the same node in both polarities.
Returns 1 if the AND-cone has the same node in the same polarity. Returns 0
if the AND-cone has no repeated nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeBalanceCone_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, int fFirst, int fDuplicate, int fSelective )
{
int RetValue1, RetValue2, i;
// check if the node is visited
if ( Abc_ObjRegular(pNode)->fMarkB )
{
// check if the node occurs in the same polarity
for ( i = 0; i < vSuper->nSize; i++ )
if ( vSuper->pArray[i] == pNode )
return 1;
// check if the node is present in the opposite polarity
for ( i = 0; i < vSuper->nSize; i++ )
if ( vSuper->pArray[i] == Abc_ObjNot(pNode) )
return -1;
assert( 0 );
return 0;
}
// if the new node is complemented or a PI, another gate begins
if ( !fFirst && (Abc_ObjIsComplement(pNode) || !Abc_ObjIsNode(pNode) || (!fDuplicate && !fSelective && (Abc_ObjFanoutNum(pNode) > 1)) || Vec_PtrSize(vSuper) > 10000) )
{
Vec_PtrPush( vSuper, pNode );
Abc_ObjRegular(pNode)->fMarkB = 1;
return 0;
}
assert( !Abc_ObjIsComplement(pNode) );
assert( Abc_ObjIsNode(pNode) );
// go through the branches
RetValue1 = Abc_NodeBalanceCone_rec( Abc_ObjChild0(pNode), vSuper, 0, fDuplicate, fSelective );
RetValue2 = Abc_NodeBalanceCone_rec( Abc_ObjChild1(pNode), vSuper, 0, fDuplicate, fSelective );
if ( RetValue1 == -1 || RetValue2 == -1 )
return -1;
// return 1 if at least one branch has a duplicate
return RetValue1 || RetValue2;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeBalanceConeExor_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vSuper, int fFirst )
{
int RetValue1, RetValue2, i;
// check if the node occurs in the same polarity
for ( i = 0; i < vSuper->nSize; i++ )
if ( vSuper->pArray[i] == pNode )
return 1;
// if the new node is complemented or a PI, another gate begins
if ( !fFirst && (!pNode->fExor || !Abc_ObjIsNode(pNode)) )
{
Vec_PtrPush( vSuper, pNode );
return 0;
}
assert( !Abc_ObjIsComplement(pNode) );
assert( Abc_ObjIsNode(pNode) );
assert( pNode->fExor );
// go through the branches
RetValue1 = Abc_NodeBalanceConeExor_rec( Abc_ObjFanin0(Abc_ObjFanin0(pNode)), vSuper, 0 );
RetValue2 = Abc_NodeBalanceConeExor_rec( Abc_ObjFanin1(Abc_ObjFanin0(pNode)), vSuper, 0 );
if ( RetValue1 == -1 || RetValue2 == -1 )
return -1;
// return 1 if at least one branch has a duplicate
return RetValue1 || RetValue2;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NodeBalanceConeExor( Abc_Obj_t * pNode )
{
Vec_Ptr_t * vSuper;
if ( !pNode->fExor )
return NULL;
vSuper = Vec_PtrAlloc( 10 );
Abc_NodeBalanceConeExor_rec( pNode, vSuper, 1 );
printf( "%d ", Vec_PtrSize(vSuper) );
Vec_PtrFree( vSuper );
return NULL;
}
/**Function*************************************************************
Synopsis [Collects the nodes in the implication supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NodeFindCone_rec( Abc_Obj_t * pNode )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pNodeC, * pNodeT, * pNodeE;
int RetValue, i;
assert( !Abc_ObjIsComplement(pNode) );
if ( Abc_ObjIsCi(pNode) )
return NULL;
// start the new array
vNodes = Vec_PtrAlloc( 4 );
// if the node is the MUX collect its fanins
if ( Abc_NodeIsMuxType(pNode) )
{
pNodeC = Abc_NodeRecognizeMux( pNode, &pNodeT, &pNodeE );
Vec_PtrPush( vNodes, Abc_ObjRegular(pNodeC) );
Vec_PtrPushUnique( vNodes, Abc_ObjRegular(pNodeT) );
Vec_PtrPushUnique( vNodes, Abc_ObjRegular(pNodeE) );
}
else
{
// collect the nodes in the implication supergate
RetValue = Abc_NodeBalanceCone_rec( pNode, vNodes, 1, 1, 0 );
assert( vNodes->nSize > 1 );
// unmark the visited nodes
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
Abc_ObjRegular(pNode)->fMarkB = 0;
// if we found the node and its complement in the same implication supergate,
// return empty set of nodes (meaning that we should use constant-0 node)
if ( RetValue == -1 )
vNodes->nSize = 0;
}
// call for the fanin
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
{
pNode = Abc_ObjRegular(pNode);
if ( pNode->pCopy )
continue;
pNode->pCopy = (Abc_Obj_t *)Abc_NodeFindCone_rec( pNode );
}
return vNodes;
}
/**Function*************************************************************
Synopsis [Attaches the implication supergates to internal nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkBalanceAttach( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i;
Abc_NtkCleanCopy( pNtk );
Abc_NtkForEachCo( pNtk, pNode, i )
{
pNode = Abc_ObjFanin0(pNode);
if ( pNode->pCopy )
continue;
pNode->pCopy = (Abc_Obj_t *)Abc_NodeFindCone_rec( pNode );
}
}
/**Function*************************************************************
Synopsis [Attaches the implication supergates to internal nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkBalanceDetach( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i;
Abc_NtkForEachNode( pNtk, pNode, i )
if ( pNode->pCopy )
{
Vec_PtrFree( (Vec_Ptr_t *)pNode->pCopy );
pNode->pCopy = NULL;
}
}
/**Function*************************************************************
Synopsis [Compute levels of implication supergates.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkBalanceLevel_rec( Abc_Obj_t * pNode )
{
Vec_Ptr_t * vSuper;
Abc_Obj_t * pFanin;
int i, LevelMax;
assert( !Abc_ObjIsComplement(pNode) );
if ( pNode->Level > 0 )
return pNode->Level;
if ( Abc_ObjIsCi(pNode) )
return 0;
vSuper = (Vec_Ptr_t *)pNode->pCopy;
assert( vSuper != NULL );
LevelMax = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vSuper, pFanin, i )
{
pFanin = Abc_ObjRegular(pFanin);
Abc_NtkBalanceLevel_rec(pFanin);
if ( LevelMax < (int)pFanin->Level )
LevelMax = pFanin->Level;
}
pNode->Level = LevelMax + 1;
return pNode->Level;
}
/**Function*************************************************************
Synopsis [Compute levels of implication supergates.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkBalanceLevel( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i;
Abc_NtkForEachObj( pNtk, pNode, i )
pNode->Level = 0;
Abc_NtkForEachCo( pNtk, pNode, i )
Abc_NtkBalanceLevel_rec( Abc_ObjFanin0(pNode) );
}
/**Function*************************************************************
Synopsis [Marks the nodes on the critical and near critical paths.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkMarkCriticalNodes( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i, Counter = 0;
Abc_NtkForEachNode( pNtk, pNode, i )
if ( Abc_ObjRequiredLevel(pNode) - pNode->Level <= 1 )
pNode->fMarkA = 1, Counter++;
printf( "The number of nodes on the critical paths = %6d (%5.2f %%)\n", Counter, 100.0 * Counter / Abc_NtkNodeNum(pNtk) );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END