blob: 3e458a06729a6dd013aa444c2bc0b9708d3dd364 [file] [log] [blame]
/**CFile****************************************************************
FileName [nwkMerge.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Netlist representation.]
Synopsis [LUT merging algorithm.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: nwkMerge.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "nwk.h"
#include "nwkMerge.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocates the graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nwk_Grf_t * Nwk_ManGraphAlloc( int nVertsMax )
{
Nwk_Grf_t * p;
p = ABC_ALLOC( Nwk_Grf_t, 1 );
memset( p, 0, sizeof(Nwk_Grf_t) );
p->nVertsMax = nVertsMax;
p->nEdgeHash = Abc_PrimeCudd( 3 * nVertsMax );
p->pEdgeHash = ABC_CALLOC( Nwk_Edg_t *, p->nEdgeHash );
p->pMemEdges = Aig_MmFixedStart( sizeof(Nwk_Edg_t), p->nEdgeHash );
p->vPairs = Vec_IntAlloc( 1000 );
return p;
}
/**Function*************************************************************
Synopsis [Deallocates the graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphFree( Nwk_Grf_t * p )
{
if ( p->vPairs ) Vec_IntFree( p->vPairs );
if ( p->pMemEdges ) Aig_MmFixedStop( p->pMemEdges, 0 );
if ( p->pMemVerts ) Aig_MmFlexStop( p->pMemVerts, 0 );
ABC_FREE( p->pVerts );
ABC_FREE( p->pEdgeHash );
ABC_FREE( p->pMapLut2Id );
ABC_FREE( p->pMapId2Lut );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Prepares the graph for solving the problem.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphReportMemoryUsage( Nwk_Grf_t * p )
{
p->nMemBytes1 =
sizeof(Nwk_Grf_t) +
sizeof(void *) * p->nEdgeHash +
sizeof(int) * (p->nObjs + p->nVertsMax) +
sizeof(Nwk_Edg_t) * p->nEdges;
p->nMemBytes2 =
sizeof(Nwk_Vrt_t) * p->nVerts +
sizeof(int) * 2 * p->nEdges;
printf( "Memory usage stats: Preprocessing = %.2f MB. Solving = %.2f MB.\n",
1.0 * p->nMemBytes1 / (1<<20), 1.0 * p->nMemBytes2 / (1<<20) );
}
/**Function*************************************************************
Synopsis [Finds or adds the edge to the graph.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphHashEdge( Nwk_Grf_t * p, int iLut1, int iLut2 )
{
Nwk_Edg_t * pEntry;
unsigned Key;
if ( iLut1 == iLut2 )
return;
if ( iLut1 > iLut2 )
{
Key = iLut1;
iLut1 = iLut2;
iLut2 = Key;
}
assert( iLut1 < iLut2 );
if ( p->nObjs < iLut2 )
p->nObjs = iLut2;
Key = (unsigned)(741457 * iLut1 + 4256249 * iLut2) % p->nEdgeHash;
for ( pEntry = p->pEdgeHash[Key]; pEntry; pEntry = pEntry->pNext )
if ( pEntry->iNode1 == iLut1 && pEntry->iNode2 == iLut2 )
return;
pEntry = (Nwk_Edg_t *)Aig_MmFixedEntryFetch( p->pMemEdges );
pEntry->iNode1 = iLut1;
pEntry->iNode2 = iLut2;
pEntry->pNext = p->pEdgeHash[Key];
p->pEdgeHash[Key] = pEntry;
p->nEdges++;
}
/**Function*************************************************************
Synopsis [Adds one entry to the list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nwk_ManGraphListAdd( Nwk_Grf_t * p, int * pList, Nwk_Vrt_t * pVertex )
{
if ( *pList )
{
Nwk_Vrt_t * pHead;
pHead = p->pVerts[*pList];
pVertex->iPrev = 0;
pVertex->iNext = pHead->Id;
pHead->iPrev = pVertex->Id;
}
*pList = pVertex->Id;
}
/**Function*************************************************************
Synopsis [Deletes one entry from the list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nwk_ManGraphListDelete( Nwk_Grf_t * p, int * pList, Nwk_Vrt_t * pVertex )
{
assert( *pList );
if ( pVertex->iPrev )
{
// assert( p->pVerts[pVertex->iPrev]->iNext == pVertex->Id );
p->pVerts[pVertex->iPrev]->iNext = pVertex->iNext;
}
if ( pVertex->iNext )
{
// assert( p->pVerts[pVertex->iNext]->iPrev == pVertex->Id );
p->pVerts[pVertex->iNext]->iPrev = pVertex->iPrev;
}
if ( *pList == pVertex->Id )
*pList = pVertex->iNext;
pVertex->iPrev = pVertex->iNext = 0;
}
/**Function*************************************************************
Synopsis [Inserts the edge into one of the linked lists.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nwk_ManGraphListInsert( Nwk_Grf_t * p, Nwk_Vrt_t * pVertex )
{
Nwk_Vrt_t * pNext;
assert( pVertex->nEdges > 0 );
if ( pVertex->nEdges == 1 )
{
pNext = p->pVerts[ pVertex->pEdges[0] ];
if ( pNext->nEdges >= NWK_MAX_LIST )
Nwk_ManGraphListAdd( p, p->pLists1 + NWK_MAX_LIST, pVertex );
else
Nwk_ManGraphListAdd( p, p->pLists1 + pNext->nEdges, pVertex );
}
else
{
if ( pVertex->nEdges >= NWK_MAX_LIST )
Nwk_ManGraphListAdd( p, p->pLists2 + NWK_MAX_LIST, pVertex );
else
Nwk_ManGraphListAdd( p, p->pLists2 + pVertex->nEdges, pVertex );
}
}
/**Function*************************************************************
Synopsis [Extracts the edge from one of the linked lists.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nwk_ManGraphListExtract( Nwk_Grf_t * p, Nwk_Vrt_t * pVertex )
{
Nwk_Vrt_t * pNext;
assert( pVertex->nEdges > 0 );
if ( pVertex->nEdges == 1 )
{
pNext = p->pVerts[ pVertex->pEdges[0] ];
if ( pNext->nEdges >= NWK_MAX_LIST )
Nwk_ManGraphListDelete( p, p->pLists1 + NWK_MAX_LIST, pVertex );
else
Nwk_ManGraphListDelete( p, p->pLists1 + pNext->nEdges, pVertex );
}
else
{
if ( pVertex->nEdges >= NWK_MAX_LIST )
Nwk_ManGraphListDelete( p, p->pLists2 + NWK_MAX_LIST, pVertex );
else
Nwk_ManGraphListDelete( p, p->pLists2 + pVertex->nEdges, pVertex );
}
}
/**Function*************************************************************
Synopsis [Prepares the graph for solving the problem.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphPrepare( Nwk_Grf_t * p )
{
Nwk_Edg_t * pEntry;
Nwk_Vrt_t * pVertex;
int * pnEdges, nBytes, i;
// allocate memory for the present objects
p->pMapLut2Id = ABC_ALLOC( int, p->nObjs+1 );
p->pMapId2Lut = ABC_ALLOC( int, p->nVertsMax+1 );
memset( p->pMapLut2Id, 0xff, sizeof(int) * (p->nObjs+1) );
memset( p->pMapId2Lut, 0xff, sizeof(int) * (p->nVertsMax+1) );
// mark present objects
Nwk_GraphForEachEdge( p, pEntry, i )
{
assert( pEntry->iNode1 <= p->nObjs );
assert( pEntry->iNode2 <= p->nObjs );
p->pMapLut2Id[ pEntry->iNode1 ] = 0;
p->pMapLut2Id[ pEntry->iNode2 ] = 0;
}
// map objects
p->nVerts = 0;
for ( i = 0; i <= p->nObjs; i++ )
{
if ( p->pMapLut2Id[i] == 0 )
{
p->pMapLut2Id[i] = ++p->nVerts;
p->pMapId2Lut[p->nVerts] = i;
}
}
// count the edges and mark present objects
pnEdges = ABC_CALLOC( int, p->nVerts+1 );
Nwk_GraphForEachEdge( p, pEntry, i )
{
// translate into vertices
assert( pEntry->iNode1 <= p->nObjs );
assert( pEntry->iNode2 <= p->nObjs );
pEntry->iNode1 = p->pMapLut2Id[pEntry->iNode1];
pEntry->iNode2 = p->pMapLut2Id[pEntry->iNode2];
// count the edges
assert( pEntry->iNode1 <= p->nVerts );
assert( pEntry->iNode2 <= p->nVerts );
pnEdges[pEntry->iNode1]++;
pnEdges[pEntry->iNode2]++;
}
// allocate the real graph
p->pMemVerts = Aig_MmFlexStart();
p->pVerts = ABC_ALLOC( Nwk_Vrt_t *, p->nVerts + 1 );
p->pVerts[0] = NULL;
for ( i = 1; i <= p->nVerts; i++ )
{
assert( pnEdges[i] > 0 );
nBytes = sizeof(Nwk_Vrt_t) + sizeof(int) * pnEdges[i];
p->pVerts[i] = (Nwk_Vrt_t *)Aig_MmFlexEntryFetch( p->pMemVerts, nBytes );
memset( p->pVerts[i], 0, nBytes );
p->pVerts[i]->Id = i;
}
// add edges to the real graph
Nwk_GraphForEachEdge( p, pEntry, i )
{
pVertex = p->pVerts[pEntry->iNode1];
pVertex->pEdges[ pVertex->nEdges++ ] = pEntry->iNode2;
pVertex = p->pVerts[pEntry->iNode2];
pVertex->pEdges[ pVertex->nEdges++ ] = pEntry->iNode1;
}
// put vertices into the data structure
for ( i = 1; i <= p->nVerts; i++ )
{
assert( p->pVerts[i]->nEdges == pnEdges[i] );
Nwk_ManGraphListInsert( p, p->pVerts[i] );
}
// clean up
Aig_MmFixedStop( p->pMemEdges, 0 ); p->pMemEdges = NULL;
ABC_FREE( p->pEdgeHash );
// p->nEdgeHash = 0;
ABC_FREE( pnEdges );
}
/**Function*************************************************************
Synopsis [Sort pairs by the first vertex in the topological order.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphSortPairs( Nwk_Grf_t * p )
{
int nSize = Vec_IntSize(p->vPairs);
int * pIdToPair, i;
// allocate storage
pIdToPair = ABC_ALLOC( int, p->nObjs+1 );
for ( i = 0; i <= p->nObjs; i++ )
pIdToPair[i] = -1;
// create mapping
for ( i = 0; i < p->vPairs->nSize; i += 2 )
{
assert( pIdToPair[ p->vPairs->pArray[i] ] == -1 );
pIdToPair[ p->vPairs->pArray[i] ] = p->vPairs->pArray[i+1];
}
// recreate pairs
Vec_IntClear( p->vPairs );
for ( i = 0; i <= p->nObjs; i++ )
if ( pIdToPair[i] >= 0 )
{
assert( i < pIdToPair[i] );
Vec_IntPush( p->vPairs, i );
Vec_IntPush( p->vPairs, pIdToPair[i] );
}
assert( nSize == Vec_IntSize(p->vPairs) );
ABC_FREE( pIdToPair );
}
/**Function*************************************************************
Synopsis [Updates the problem after pulling out one edge.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphCheckLists( Nwk_Grf_t * p )
{
Nwk_Vrt_t * pVertex, * pNext;
int i, j;
assert( p->pLists1[0] == 0 );
for ( i = 1; i <= NWK_MAX_LIST; i++ )
if ( p->pLists1[i] )
{
pVertex = p->pVerts[ p->pLists1[i] ];
assert( pVertex->nEdges == 1 );
pNext = p->pVerts[ pVertex->pEdges[0] ];
assert( pNext->nEdges == i || pNext->nEdges > NWK_MAX_LIST );
}
// find the next vertext to extract
assert( p->pLists2[0] == 0 );
assert( p->pLists2[1] == 0 );
for ( j = 2; j <= NWK_MAX_LIST; j++ )
if ( p->pLists2[j] )
{
pVertex = p->pVerts[ p->pLists2[j] ];
assert( pVertex->nEdges == j || pVertex->nEdges > NWK_MAX_LIST );
}
}
/**Function*************************************************************
Synopsis [Extracts the edge from one of the linked lists.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Nwk_ManGraphVertexRemoveEdge( Nwk_Vrt_t * pThis, Nwk_Vrt_t * pNext )
{
int k;
for ( k = 0; k < pThis->nEdges; k++ )
if ( pThis->pEdges[k] == pNext->Id )
break;
assert( k < pThis->nEdges );
pThis->nEdges--;
for ( ; k < pThis->nEdges; k++ )
pThis->pEdges[k] = pThis->pEdges[k+1];
}
/**Function*************************************************************
Synopsis [Updates the problem after pulling out one edge.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphUpdate( Nwk_Grf_t * p, Nwk_Vrt_t * pVertex, Nwk_Vrt_t * pNext )
{
Nwk_Vrt_t * pChanged, * pOther;
int i, k;
// Nwk_ManGraphCheckLists( p );
Nwk_ManGraphListExtract( p, pVertex );
Nwk_ManGraphListExtract( p, pNext );
// update neihbors of pVertex
Nwk_VertexForEachAdjacent( p, pVertex, pChanged, i )
{
if ( pChanged == pNext )
continue;
Nwk_ManGraphListExtract( p, pChanged );
// move those that use this one
if ( pChanged->nEdges > 1 )
Nwk_VertexForEachAdjacent( p, pChanged, pOther, k )
{
if ( pOther == pVertex || pOther->nEdges > 1 )
continue;
assert( pOther->nEdges == 1 );
Nwk_ManGraphListExtract( p, pOther );
pChanged->nEdges--;
Nwk_ManGraphListInsert( p, pOther );
pChanged->nEdges++;
}
// remove the edge
Nwk_ManGraphVertexRemoveEdge( pChanged, pVertex );
// add the changed vertex back
if ( pChanged->nEdges > 0 )
Nwk_ManGraphListInsert( p, pChanged );
}
// update neihbors of pNext
Nwk_VertexForEachAdjacent( p, pNext, pChanged, i )
{
if ( pChanged == pVertex )
continue;
Nwk_ManGraphListExtract( p, pChanged );
// move those that use this one
if ( pChanged->nEdges > 1 )
Nwk_VertexForEachAdjacent( p, pChanged, pOther, k )
{
if ( pOther == pNext || pOther->nEdges > 1 )
continue;
assert( pOther->nEdges == 1 );
Nwk_ManGraphListExtract( p, pOther );
pChanged->nEdges--;
Nwk_ManGraphListInsert( p, pOther );
pChanged->nEdges++;
}
// remove the edge
Nwk_ManGraphVertexRemoveEdge( pChanged, pNext );
// add the changed vertex back
if ( pChanged->nEdges > 0 )
Nwk_ManGraphListInsert( p, pChanged );
}
// add to the result
if ( pVertex->Id < pNext->Id )
{
Vec_IntPush( p->vPairs, p->pMapId2Lut[pVertex->Id] );
Vec_IntPush( p->vPairs, p->pMapId2Lut[pNext->Id] );
}
else
{
Vec_IntPush( p->vPairs, p->pMapId2Lut[pNext->Id] );
Vec_IntPush( p->vPairs, p->pMapId2Lut[pVertex->Id] );
}
// Nwk_ManGraphCheckLists( p );
}
/**Function*************************************************************
Synopsis [Counts the number of entries in the list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManGraphListLength( Nwk_Grf_t * p, int List )
{
Nwk_Vrt_t * pThis;
int fVerbose = 0;
int Counter = 0;
Nwk_ListForEachVertex( p, List, pThis )
{
if ( fVerbose && Counter < 20 )
printf( "%d ", p->pVerts[pThis->pEdges[0]]->nEdges );
Counter++;
}
if ( fVerbose )
printf( "\n" );
return Counter;
}
/**Function*************************************************************
Synopsis [Returns the adjacent vertex with the mininum number of edges.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nwk_Vrt_t * Nwk_ManGraphListFindMinEdge( Nwk_Grf_t * p, Nwk_Vrt_t * pVert )
{
Nwk_Vrt_t * pThis, * pMinCost = NULL;
int k;
Nwk_VertexForEachAdjacent( p, pVert, pThis, k )
{
if ( pMinCost == NULL || pMinCost->nEdges > pThis->nEdges )
pMinCost = pThis;
}
return pMinCost;
}
/**Function*************************************************************
Synopsis [Finds the best vertext in the list.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nwk_Vrt_t * Nwk_ManGraphListFindMin( Nwk_Grf_t * p, int List )
{
Nwk_Vrt_t * pThis, * pMinCost = NULL;
int k, Counter = 10000, BestCost = 1000000;
Nwk_ListForEachVertex( p, List, pThis )
{
for ( k = 0; k < pThis->nEdges; k++ )
{
if ( pMinCost == NULL || BestCost > p->pVerts[pThis->pEdges[k]]->nEdges )
{
BestCost = p->pVerts[pThis->pEdges[k]]->nEdges;
pMinCost = pThis;
}
}
if ( --Counter == 0 )
break;
}
return pMinCost;
}
/**Function*************************************************************
Synopsis [Solves the problem by extracting one edge at a time.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManGraphSolve( Nwk_Grf_t * p )
{
Nwk_Vrt_t * pVertex, * pNext;
int i, j;
Nwk_ManGraphPrepare( p );
while ( 1 )
{
// find the next vertex to extract
assert( p->pLists1[0] == 0 );
for ( i = 1; i <= NWK_MAX_LIST; i++ )
if ( p->pLists1[i] )
{
// printf( "%d ", i );
// printf( "ListA = %2d. Length = %5d.\n", i, Nwk_ManGraphListLength(p,p->pLists1[i]) );
pVertex = p->pVerts[ p->pLists1[i] ];
assert( pVertex->nEdges == 1 );
pNext = p->pVerts[ pVertex->pEdges[0] ];
Nwk_ManGraphUpdate( p, pVertex, pNext );
break;
}
if ( i < NWK_MAX_LIST + 1 )
continue;
// find the next vertex to extract
assert( p->pLists2[0] == 0 );
assert( p->pLists2[1] == 0 );
for ( j = 2; j <= NWK_MAX_LIST; j++ )
if ( p->pLists2[j] )
{
// printf( "***%d ", j );
// printf( "ListB = %2d. Length = %5d.\n", j, Nwk_ManGraphListLength(p,p->pLists2[j]) );
pVertex = Nwk_ManGraphListFindMin( p, p->pLists2[j] );
assert( pVertex->nEdges == j || j == NWK_MAX_LIST );
pNext = Nwk_ManGraphListFindMinEdge( p, pVertex );
Nwk_ManGraphUpdate( p, pVertex, pNext );
break;
}
if ( j == NWK_MAX_LIST + 1 )
break;
}
Nwk_ManGraphSortPairs( p );
}
/**Function*************************************************************
Synopsis [Reads graph from file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Nwk_Grf_t * Nwk_ManLutMergeReadGraph( char * pFileName )
{
Nwk_Grf_t * p;
FILE * pFile;
char Buffer[100];
int nNodes, nEdges, iNode1, iNode2;
int RetValue;
pFile = fopen( pFileName, "r" );
RetValue = fscanf( pFile, "%s %d", Buffer, &nNodes );
RetValue = fscanf( pFile, "%s %d", Buffer, &nEdges );
p = Nwk_ManGraphAlloc( nNodes );
while ( fscanf( pFile, "%s %d %d", Buffer, &iNode1, &iNode2 ) == 3 )
Nwk_ManGraphHashEdge( p, iNode1, iNode2 );
assert( p->nEdges == nEdges );
fclose( pFile );
return p;
}
/**Function*************************************************************
Synopsis [Solves the graph coming from file.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManLutMergeGraphTest( char * pFileName )
{
int nPairs;
Nwk_Grf_t * p;
abctime clk = Abc_Clock();
p = Nwk_ManLutMergeReadGraph( pFileName );
ABC_PRT( "Reading", Abc_Clock() - clk );
clk = Abc_Clock();
Nwk_ManGraphSolve( p );
printf( "GRAPH: Nodes = %6d. Edges = %6d. Pairs = %6d. ",
p->nVerts, p->nEdges, Vec_IntSize(p->vPairs)/2 );
ABC_PRT( "Solving", Abc_Clock() - clk );
nPairs = Vec_IntSize(p->vPairs)/2;
Nwk_ManGraphReportMemoryUsage( p );
Nwk_ManGraphFree( p );
return nPairs;
}
/**Function*************************************************************
Synopsis [Marks the fanins of the node with the current trav ID.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManMarkFanins_rec( Nwk_Obj_t * pLut, int nLevMin )
{
Nwk_Obj_t * pNext;
int i;
if ( !Nwk_ObjIsNode(pLut) )
return;
if ( Nwk_ObjIsTravIdCurrent( pLut ) )
return;
Nwk_ObjSetTravIdCurrent( pLut );
if ( Nwk_ObjLevel(pLut) < nLevMin )
return;
Nwk_ObjForEachFanin( pLut, pNext, i )
Nwk_ManMarkFanins_rec( pNext, nLevMin );
}
/**Function*************************************************************
Synopsis [Marks the fanouts of the node with the current trav ID.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManMarkFanouts_rec( Nwk_Obj_t * pLut, int nLevMax, int nFanMax )
{
Nwk_Obj_t * pNext;
int i;
if ( !Nwk_ObjIsNode(pLut) )
return;
if ( Nwk_ObjIsTravIdCurrent( pLut ) )
return;
Nwk_ObjSetTravIdCurrent( pLut );
if ( Nwk_ObjLevel(pLut) > nLevMax )
return;
if ( Nwk_ObjFanoutNum(pLut) > nFanMax )
return;
Nwk_ObjForEachFanout( pLut, pNext, i )
Nwk_ManMarkFanouts_rec( pNext, nLevMax, nFanMax );
}
/**Function*************************************************************
Synopsis [Collects the circle of nodes around the given set.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManCollectCircle( Vec_Ptr_t * vStart, Vec_Ptr_t * vNext, int nFanMax )
{
Nwk_Obj_t * pObj, * pNext;
int i, k;
Vec_PtrClear( vNext );
Vec_PtrForEachEntry( Nwk_Obj_t *, vStart, pObj, i )
{
Nwk_ObjForEachFanin( pObj, pNext, k )
{
if ( !Nwk_ObjIsNode(pNext) )
continue;
if ( Nwk_ObjIsTravIdCurrent( pNext ) )
continue;
Nwk_ObjSetTravIdCurrent( pNext );
Vec_PtrPush( vNext, pNext );
}
Nwk_ObjForEachFanout( pObj, pNext, k )
{
if ( !Nwk_ObjIsNode(pNext) )
continue;
if ( Nwk_ObjIsTravIdCurrent( pNext ) )
continue;
Nwk_ObjSetTravIdCurrent( pNext );
if ( Nwk_ObjFanoutNum(pNext) > nFanMax )
continue;
Vec_PtrPush( vNext, pNext );
}
}
}
/**Function*************************************************************
Synopsis [Collects the circle of nodes removes from the given one.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManCollectNonOverlapCands( Nwk_Obj_t * pLut, Vec_Ptr_t * vStart, Vec_Ptr_t * vNext, Vec_Ptr_t * vCands, Nwk_LMPars_t * pPars )
{
Vec_Ptr_t * vTemp;
Nwk_Obj_t * pObj;
int i, k;
Vec_PtrClear( vCands );
if ( pPars->nMaxSuppSize - Nwk_ObjFaninNum(pLut) <= 1 )
return;
// collect nodes removed by this distance
assert( pPars->nMaxDistance > 0 );
Vec_PtrClear( vStart );
Vec_PtrPush( vStart, pLut );
Nwk_ManIncrementTravId( pLut->pMan );
Nwk_ObjSetTravIdCurrent( pLut );
for ( i = 1; i <= pPars->nMaxDistance; i++ )
{
Nwk_ManCollectCircle( vStart, vNext, pPars->nMaxFanout );
vTemp = vStart;
vStart = vNext;
vNext = vTemp;
// collect the nodes in vStart
Vec_PtrForEachEntry( Nwk_Obj_t *, vStart, pObj, k )
Vec_PtrPush( vCands, pObj );
}
// mark the TFI/TFO nodes
Nwk_ManIncrementTravId( pLut->pMan );
if ( pPars->fUseTfiTfo )
Nwk_ObjSetTravIdCurrent( pLut );
else
{
Nwk_ObjSetTravIdPrevious( pLut );
Nwk_ManMarkFanins_rec( pLut, Nwk_ObjLevel(pLut) - pPars->nMaxDistance );
Nwk_ObjSetTravIdPrevious( pLut );
Nwk_ManMarkFanouts_rec( pLut, Nwk_ObjLevel(pLut) + pPars->nMaxDistance, pPars->nMaxFanout );
}
// collect nodes satisfying the following conditions:
// - they are close enough in terms of distance
// - they are not in the TFI/TFO of the LUT
// - they have no more than the given number of fanins
// - they have no more than the given diff in delay
k = 0;
Vec_PtrForEachEntry( Nwk_Obj_t *, vCands, pObj, i )
{
if ( Nwk_ObjIsTravIdCurrent(pObj) )
continue;
if ( Nwk_ObjFaninNum(pLut) + Nwk_ObjFaninNum(pObj) > pPars->nMaxSuppSize )
continue;
if ( Nwk_ObjLevel(pLut) - Nwk_ObjLevel(pObj) > pPars->nMaxLevelDiff ||
Nwk_ObjLevel(pObj) - Nwk_ObjLevel(pLut) > pPars->nMaxLevelDiff )
continue;
Vec_PtrWriteEntry( vCands, k++, pObj );
}
Vec_PtrShrink( vCands, k );
}
/**Function*************************************************************
Synopsis [Count the total number of fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Nwk_ManCountTotalFanins( Nwk_Obj_t * pLut, Nwk_Obj_t * pCand )
{
Nwk_Obj_t * pFanin;
int i, nCounter = Nwk_ObjFaninNum(pLut);
Nwk_ObjForEachFanin( pCand, pFanin, i )
nCounter += !pFanin->MarkC;
return nCounter;
}
/**Function*************************************************************
Synopsis [Collects overlapping candidates.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Nwk_ManCollectOverlapCands( Nwk_Obj_t * pLut, Vec_Ptr_t * vCands, Nwk_LMPars_t * pPars )
{
Nwk_Obj_t * pFanin, * pObj;
int i, k;
// mark fanins of pLut
Nwk_ObjForEachFanin( pLut, pFanin, i )
pFanin->MarkC = 1;
// collect the matching fanouts of each fanin of the node
Vec_PtrClear( vCands );
Nwk_ManIncrementTravId( pLut->pMan );
Nwk_ObjSetTravIdCurrent( pLut );
Nwk_ObjForEachFanin( pLut, pFanin, i )
{
if ( !Nwk_ObjIsNode(pFanin) )
continue;
if ( Nwk_ObjFanoutNum(pFanin) > pPars->nMaxFanout )
continue;
Nwk_ObjForEachFanout( pFanin, pObj, k )
{
if ( !Nwk_ObjIsNode(pObj) )
continue;
if ( Nwk_ObjIsTravIdCurrent( pObj ) )
continue;
Nwk_ObjSetTravIdCurrent( pObj );
// check the difference in delay
if ( Nwk_ObjLevel(pLut) - Nwk_ObjLevel(pObj) > pPars->nMaxLevelDiff ||
Nwk_ObjLevel(pObj) - Nwk_ObjLevel(pLut) > pPars->nMaxLevelDiff )
continue;
// check the total number of fanins of the node
if ( Nwk_ManCountTotalFanins(pLut, pObj) > pPars->nMaxSuppSize )
continue;
Vec_PtrPush( vCands, pObj );
}
}
// unmark fanins of pLut
Nwk_ObjForEachFanin( pLut, pFanin, i )
pFanin->MarkC = 0;
}
/**Function*************************************************************
Synopsis [Performs LUT merging with parameters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Nwk_ManLutMerge( Nwk_Man_t * pNtk, void * pParsInit )
{
Nwk_LMPars_t * pPars = (Nwk_LMPars_t *)pParsInit;
Nwk_Grf_t * p;
Vec_Int_t * vResult;
Vec_Ptr_t * vStart, * vNext, * vCands1, * vCands2;
Nwk_Obj_t * pLut, * pCand;
int i, k, nVertsMax, nCands;
abctime clk = Abc_Clock();
// count the number of vertices
nVertsMax = 0;
Nwk_ManForEachNode( pNtk, pLut, i )
nVertsMax += (int)(Nwk_ObjFaninNum(pLut) <= pPars->nMaxLutSize);
p = Nwk_ManGraphAlloc( nVertsMax );
// create graph
vStart = Vec_PtrAlloc( 1000 );
vNext = Vec_PtrAlloc( 1000 );
vCands1 = Vec_PtrAlloc( 1000 );
vCands2 = Vec_PtrAlloc( 1000 );
nCands = 0;
Nwk_ManForEachNode( pNtk, pLut, i )
{
if ( Nwk_ObjFaninNum(pLut) > pPars->nMaxLutSize )
continue;
Nwk_ManCollectOverlapCands( pLut, vCands1, pPars );
if ( pPars->fUseDiffSupp )
Nwk_ManCollectNonOverlapCands( pLut, vStart, vNext, vCands2, pPars );
if ( Vec_PtrSize(vCands1) == 0 && Vec_PtrSize(vCands2) == 0 )
continue;
nCands += Vec_PtrSize(vCands1) + Vec_PtrSize(vCands2);
// save candidates
Vec_PtrForEachEntry( Nwk_Obj_t *, vCands1, pCand, k )
Nwk_ManGraphHashEdge( p, Nwk_ObjId(pLut), Nwk_ObjId(pCand) );
Vec_PtrForEachEntry( Nwk_Obj_t *, vCands2, pCand, k )
Nwk_ManGraphHashEdge( p, Nwk_ObjId(pLut), Nwk_ObjId(pCand) );
// print statistics about this node
if ( pPars->fVeryVerbose )
printf( "Node %6d : Fanins = %d. Fanouts = %3d. Cand1 = %3d. Cand2 = %3d.\n",
Nwk_ObjId(pLut), Nwk_ObjFaninNum(pLut), Nwk_ObjFaninNum(pLut),
Vec_PtrSize(vCands1), Vec_PtrSize(vCands2) );
}
Vec_PtrFree( vStart );
Vec_PtrFree( vNext );
Vec_PtrFree( vCands1 );
Vec_PtrFree( vCands2 );
if ( pPars->fVerbose )
{
printf( "Mergable LUTs = %6d. Total cands = %6d. ", p->nVertsMax, nCands );
ABC_PRT( "Deriving graph", Abc_Clock() - clk );
}
// solve the graph problem
clk = Abc_Clock();
Nwk_ManGraphSolve( p );
if ( pPars->fVerbose )
{
printf( "GRAPH: Nodes = %6d. Edges = %6d. Pairs = %6d. ",
p->nVerts, p->nEdges, Vec_IntSize(p->vPairs)/2 );
ABC_PRT( "Solving", Abc_Clock() - clk );
Nwk_ManGraphReportMemoryUsage( p );
}
vResult = p->vPairs; p->vPairs = NULL;
/*
for ( i = 0; i < vResult->nSize; i += 2 )
printf( "(%d,%d) ", vResult->pArray[i], vResult->pArray[i+1] );
printf( "\n" );
*/
Nwk_ManGraphFree( p );
return vResult;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END