blob: 7e699d9b6315b7bb52eb94065719eb6ab71279c8 [file] [log] [blame]
/**CFile****************************************************************
FileName [giaMf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Scalable AIG package.]
Synopsis [Cut computation.]
Author [Alan Mishchenko]`
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: giaMf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "gia.h"
#include "misc/vec/vecMem.h"
#include "misc/util/utilTruth.h"
#include "misc/extra/extra.h"
#include "sat/cnf/cnf.h"
#include "opt/dau/dau.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define MF_LEAF_MAX 10
#define MF_CUT_MAX 16
#define MF_LOG_PAGE 12
#define MF_NO_LEAF 31
#define MF_TT_WORDS ((MF_LEAF_MAX > 6) ? 1 << (MF_LEAF_MAX-6) : 1)
#define MF_NO_FUNC 134217727 // (1<<27)-1
#define MF_EPSILON 0.005
typedef struct Mf_Cut_t_ Mf_Cut_t;
struct Mf_Cut_t_
{
word Sign; // signature
int Delay; // delay
float Flow; // flow
unsigned iFunc : 27; // function (MF_NO_FUNC)
unsigned nLeaves : 5; // leaf number (MF_NO_LEAF)
int pLeaves[MF_LEAF_MAX+1]; // leaves
};
typedef struct Mf_Obj_t_ Mf_Obj_t;
struct Mf_Obj_t_
{
int iCutSet; // cutset
float Flow; // area
float nFlowRefs; // flow references
unsigned Delay : 16; // delay
unsigned nMapRefs : 16; // map references
};
typedef struct Mf_Man_t_ Mf_Man_t;
struct Mf_Man_t_
{
// user data
Gia_Man_t * pGia0; // original manager
Gia_Man_t * pGia; // derived manager
Jf_Par_t * pPars; // parameters
// cut data
Mf_Obj_t * pLfObjs; // best cuts
Vec_Ptr_t vPages; // cut memory
Vec_Mem_t * vTtMem; // truth tables
Vec_Int_t vCnfSizes; // handles to CNF
Vec_Int_t vCnfMem; // memory for CNF
Vec_Int_t vTemp; // temporary array
int iCur; // current position
int Iter; // mapping iterations
int fUseEla; // use exact area
// statistics
abctime clkStart; // starting time
double CutCount[4]; // cut counts
int nCutCounts[MF_LEAF_MAX+1];
};
static inline Mf_Obj_t * Mf_ManObj( Mf_Man_t * p, int i ) { return p->pLfObjs + i; }
static inline int * Mf_ManCutSet( Mf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); }
static inline int * Mf_ObjCutSet( Mf_Man_t * p, int i ) { return Mf_ManCutSet(p, Mf_ManObj(p, i)->iCutSet); }
static inline int * Mf_ObjCutBest( Mf_Man_t * p, int i ) { return Mf_ObjCutSet(p, i) + 1; }
static inline int Mf_ObjMapRefNum( Mf_Man_t * p, int i ) { return Mf_ManObj(p, i)->nMapRefs; }
static inline int Mf_ObjMapRefInc( Mf_Man_t * p, int i ) { return Mf_ManObj(p, i)->nMapRefs++; }
static inline int Mf_ObjMapRefDec( Mf_Man_t * p, int i ) { return --Mf_ManObj(p, i)->nMapRefs; }
static inline int Mf_CutSize( int * pCut ) { return pCut[0] & MF_NO_LEAF; }
static inline int Mf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); }
static inline int Mf_CutSetBoth( int n, int f ) { return n | (f << 5); }
static inline int Mf_CutIsTriv( int * pCut, int i ) { return Mf_CutSize(pCut) == 1 && pCut[1] == i; }
#define Mf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Mf_CutSize(pCut) + 1 )
#define Mf_ObjForEachCut( pCuts, i, nCuts ) for ( i = 0, i < nCuts; i++ )
extern int Kit_TruthToGia( Gia_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory, Vec_Int_t * vLeaves, int fHash );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computing truth tables of useful DSD classes of 6-functions.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static int s_nCalls = 0;
static Vec_Mem_t * s_vTtMem = NULL;
int Mf_ManTruthCanonicize( word * t, int nVars )
{
word Temp, Best = *t;
int r, i, Config = 0;
for ( r = 0; r < 1; r++ )
{
if ( Best > (Temp = ~Best) )
Best = Temp, Config ^= (1 << nVars);
for ( i = 0; i < nVars; i++ )
if ( Best > (Temp = Abc_Tt6Flip(Best, i)) )
Best = Temp, Config ^= (1 << i);
}
*t = Best;
if ( s_vTtMem == NULL )
s_vTtMem = Vec_MemAllocForTT( 6, 0 );
Vec_MemHashInsert( s_vTtMem, t );
s_nCalls++;
return Config;
}
void Mf_ManTruthQuit()
{
if ( s_vTtMem == NULL )
return;
printf( "TT = %d (%.2f %%)\n", Vec_MemEntryNum(s_vTtMem), 100.0 * Vec_MemEntryNum(s_vTtMem) / s_nCalls );
Vec_MemHashFree( s_vTtMem );
Vec_MemFree( s_vTtMem );
s_vTtMem = NULL;
s_nCalls = 0;
}
Vec_Wrd_t * Mf_ManTruthCollect( int Limit )
{
extern Vec_Wrd_t * Mpm_ManGetTruthWithCnf( int Limit );
int * pPerm = Extra_PermSchedule( 6 );
int * pComp = Extra_GreyCodeSchedule( 6 );
Vec_Wrd_t * vTruths = Mpm_ManGetTruthWithCnf( Limit );
Vec_Wrd_t * vResult = Vec_WrdAlloc( 1 << 20 );
word uTruth, tCur, tTemp1, tTemp2;
int i, p, c, k;
Vec_WrdForEachEntry( vTruths, uTruth, k )
{
for ( i = 0; i < 2; i++ )
{
tCur = i ? ~uTruth : uTruth;
tTemp1 = tCur;
for ( p = 0; p < 720; p++ )
{
tTemp2 = tCur;
for ( c = 0; c < 64; c++ )
{
tCur = Abc_Tt6Flip( tCur, pComp[c] );
Vec_WrdPush( vResult, tCur );
}
assert( tTemp2 == tCur );
tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[p] );
}
assert( tTemp1 == tCur );
}
}
ABC_FREE( pPerm );
ABC_FREE( pComp );
printf( "Original = %d. ", Vec_WrdSize(vTruths) );
Vec_WrdFree( vTruths );
printf( "Total = %d. ", Vec_WrdSize(vResult) );
vTruths = Vec_WrdUniqifyHash( vResult, 1 );
Vec_WrdFree( vResult );
printf( "Unique = %d. ", Vec_WrdSize(vTruths) );
Vec_WrdForEachEntry( vTruths, uTruth, k )
{
Mf_ManTruthCanonicize( &uTruth, 6 );
Vec_WrdWriteEntry( vTruths, k, uTruth );
}
vResult = Vec_WrdUniqifyHash( vTruths, 1 );
Vec_WrdFree( vTruths );
printf( "Unique = %d. \n", Vec_WrdSize(vResult) );
return vResult;
}
int Mf_ManTruthCount()
{
Vec_Wrd_t * vTruths = Mf_ManTruthCollect( 10 );
int RetValue = Vec_WrdSize( vTruths );
Vec_WrdFree( vTruths );
return RetValue;
}
/**Function*************************************************************
Synopsis [Collect truth tables used by the mapper.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Mf_ManProfileTruths( Mf_Man_t * p )
{
Vec_Int_t * vCounts;
int i, Entry, * pCut, Counter = 0;
vCounts = Vec_IntStart( Vec_IntSize(&p->vCnfSizes) );
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
Vec_IntAddToEntry( vCounts, Abc_Lit2Var(Mf_CutFunc(pCut)), 1 );
}
Vec_IntForEachEntry( vCounts, Entry, i )
{
if ( Entry == 0 )
continue;
printf( "%6d : ", Counter++ );
printf( "%6d : ", i );
printf( "Occur = %4d ", Entry );
printf( "CNF size = %2d ", Vec_IntEntry(&p->vCnfSizes, i) );
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, i), p->pPars->nLutSize );
}
Vec_IntFree( vCounts );
}
/**Function*************************************************************
Synopsis [Derives CNFs for each function used in the mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Mf_CutPrintOne( int * pCut )
{
int i;
printf( "%d {", Mf_CutSize(pCut) );
for ( i = 1; i <= Mf_CutSize(pCut); i++ )
printf( " %d", pCut[i] );
printf( " }\n" );
}
static inline int Mf_CubeLit( int Cube, int iVar ) { return (Cube >> (iVar << 1)) & 3; }
static inline int Mf_ManCountLits( int * pCnf, int nCubes, int nVars )
{
int i, k, nLits = nCubes;
for ( i = 0; i < nCubes; i++ )
for ( k = 0; k < nVars; k++ )
if ( Mf_CubeLit(pCnf[i], k) )
nLits++;
return nLits;
}
Vec_Int_t * Mf_ManDeriveCnfs( Mf_Man_t * p, int * pnVars, int * pnClas, int * pnLits )
{
int i, k, iFunc, nCubes, nLits, * pCut, pCnf[512];
Vec_Int_t * vLits = Vec_IntStart( Vec_IntSize(&p->vCnfSizes) );
Vec_Int_t * vCnfs = Vec_IntAlloc( 3 * Vec_IntSize(&p->vCnfSizes) );
Vec_IntFill( vCnfs, Vec_IntSize(&p->vCnfSizes), -1 );
assert( p->pPars->nLutSize <= 8 );
// constant/buffer
for ( iFunc = 0; iFunc < 2; iFunc++ )
{
if ( p->pPars->nLutSize <= 6 )
nCubes = Abc_Tt6Cnf( *Vec_MemReadEntry(p->vTtMem, iFunc), iFunc, pCnf );
else
nCubes = Abc_Tt8Cnf( Vec_MemReadEntry(p->vTtMem, iFunc), iFunc, pCnf );
nLits = Mf_ManCountLits( pCnf, nCubes, iFunc );
Vec_IntWriteEntry( vLits, iFunc, nLits );
Vec_IntWriteEntry( vCnfs, iFunc, Vec_IntSize(vCnfs) );
Vec_IntPush( vCnfs, nCubes );
for ( k = 0; k < nCubes; k++ )
Vec_IntPush( vCnfs, pCnf[k] );
}
// other functions
*pnVars = 1 + Gia_ManCiNum(p->pGia) + Gia_ManCoNum(p->pGia);
*pnClas = 1 + 2 * Gia_ManCoNum(p->pGia);
*pnLits = 1 + 4 * Gia_ManCoNum(p->pGia);
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
//Mf_CutPrintOne( pCut );
iFunc = Abc_Lit2Var( Mf_CutFunc(pCut) );
if ( Vec_IntEntry(vCnfs, iFunc) == -1 )
{
if ( p->pPars->nLutSize <= 6 )
nCubes = Abc_Tt6Cnf( *Vec_MemReadEntry(p->vTtMem, iFunc), Mf_CutSize(pCut), pCnf );
else
nCubes = Abc_Tt8Cnf( Vec_MemReadEntry(p->vTtMem, iFunc), Mf_CutSize(pCut), pCnf );
assert( nCubes == Vec_IntEntry(&p->vCnfSizes, iFunc) );
nLits = Mf_ManCountLits( pCnf, nCubes, Mf_CutSize(pCut) );
// save CNF
Vec_IntWriteEntry( vLits, iFunc, nLits );
Vec_IntWriteEntry( vCnfs, iFunc, Vec_IntSize(vCnfs) );
Vec_IntPush( vCnfs, nCubes );
for ( k = 0; k < nCubes; k++ )
Vec_IntPush( vCnfs, pCnf[k] );
}
*pnVars += 1;
*pnClas += Vec_IntEntry(&p->vCnfSizes, iFunc);
*pnLits += Vec_IntEntry(vLits, iFunc);
}
Vec_IntFree( vLits );
return vCnfs;
}
/**Function*************************************************************
Synopsis [Derives CNF for the AIG using the mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Cnf_Dat_t * Mf_ManDeriveCnf( Mf_Man_t * p, int fCnfObjIds, int fAddOrCla )
{
Cnf_Dat_t * pCnf;
Gia_Obj_t * pObj;
int Id, DriId, nVars, nClas, nLits, iVar = 1, iCla = 0, iLit = 0;
Vec_Int_t * vCnfs = Mf_ManDeriveCnfs( p, &nVars, &nClas, &nLits );
Vec_Int_t * vCnfIds = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
int pFanins[16], * pCut, * pCnfIds = Vec_IntArray( vCnfIds );
int i, k, c, iFunc, nCubes, * pCubes, fComplLast;
nVars++; // zero-ID to remain unused
if ( fAddOrCla )
{
nClas++;
nLits += Gia_ManCoNum(p->pGia);
}
// create CNF IDs
if ( fCnfObjIds )
{
iVar += 1 + Gia_ManCiNum(p->pGia) + Gia_ManCoNum(p->pGia);
Gia_ManForEachCoId( p->pGia, Id, i )
Vec_IntWriteEntry( vCnfIds, Id, Id );
Gia_ManForEachAndReverseId( p->pGia, Id )
if ( Mf_ObjMapRefNum(p, Id) )
Vec_IntWriteEntry( vCnfIds, Id, Id ), iVar++;
Vec_IntWriteEntry( vCnfIds, 0, 0 );
Gia_ManForEachCiId( p->pGia, Id, i )
Vec_IntWriteEntry( vCnfIds, Id, Id );
assert( iVar == nVars );
}
else
{
Gia_ManForEachCoId( p->pGia, Id, i )
Vec_IntWriteEntry( vCnfIds, Id, iVar++ );
Gia_ManForEachAndReverseId( p->pGia, Id )
if ( Mf_ObjMapRefNum(p, Id) )
Vec_IntWriteEntry( vCnfIds, Id, iVar++ );
Vec_IntWriteEntry( vCnfIds, 0, iVar++ );
Gia_ManForEachCiId( p->pGia, Id, i )
Vec_IntWriteEntry( vCnfIds, Id, iVar++ );
assert( iVar == nVars );
}
// generate CNF
pCnf = ABC_CALLOC( Cnf_Dat_t, 1 );
pCnf->pMan = (Aig_Man_t *)p->pGia;
pCnf->nVars = nVars;
pCnf->nLiterals = nLits;
pCnf->nClauses = nClas;
pCnf->pClauses = ABC_ALLOC( int *, nClas+1 );
pCnf->pClauses[0] = ABC_ALLOC( int, nLits );
// add last clause
if ( fAddOrCla )
{
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
Gia_ManForEachCoId( p->pGia, Id, i )
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 0);
}
if ( p->pPars->fCnfMapping )
pCnf->vMapping = Vec_IntStart( nVars );
// add clauses for the COs
Gia_ManForEachCo( p->pGia, pObj, i )
{
Id = Gia_ObjId( p->pGia, pObj );
DriId = Gia_ObjFaninId0( pObj, Id );
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 0);
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[DriId], !Gia_ObjFaninC0(pObj));
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], 1);
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[DriId], Gia_ObjFaninC0(pObj));
// generate mapping
if ( pCnf->vMapping )
{
Vec_IntWriteEntry( pCnf->vMapping, pCnfIds[Id], Vec_IntSize(pCnf->vMapping) );
Vec_IntPush( pCnf->vMapping, 1 );
Vec_IntPush( pCnf->vMapping, pCnfIds[DriId] );
Vec_IntPush( pCnf->vMapping, Gia_ObjFaninC0(pObj) ? 0x55555555 : 0xAAAAAAAA );
}
}
// add clauses for the mapping
Gia_ManForEachAndReverseId( p->pGia, Id )
{
if ( !Mf_ObjMapRefNum(p, Id) )
continue;
pCut = Mf_ObjCutBest( p, Id );
iFunc = Abc_Lit2Var( Mf_CutFunc(pCut) );
fComplLast = Abc_LitIsCompl( Mf_CutFunc(pCut) );
if ( iFunc == 0 ) // constant cut
{
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[Id], !fComplLast);
assert( pCnf->vMapping == NULL ); // bug fix does not handle generated mapping
continue;
}
for ( k = 0; k < Mf_CutSize(pCut); k++ )
pFanins[k] = pCnfIds[pCut[k+1]];
pFanins[k++] = pCnfIds[Id];
// get clauses
pCubes = Vec_IntEntryP( vCnfs, Vec_IntEntry(vCnfs, iFunc) );
nCubes = *pCubes++;
for ( c = 0; c < nCubes; c++ )
{
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
k = Mf_CutSize(pCut);
assert( Mf_CubeLit(pCubes[c], k) );
pCnf->pClauses[0][iLit++] = Abc_Var2Lit( pFanins[k], (Mf_CubeLit(pCubes[c], k) == 2) ^ fComplLast );
for ( k = 0; k < Mf_CutSize(pCut); k++ )
if ( Mf_CubeLit(pCubes[c], k) )
pCnf->pClauses[0][iLit++] = Abc_Var2Lit( pFanins[k], Mf_CubeLit(pCubes[c], k) == 2 );
}
// generate mapping
if ( pCnf->vMapping )
{
word pTruth[4], * pTruthP = Vec_MemReadEntry(p->vTtMem, iFunc);
assert( p->pPars->nLutSize <= 8 );
Abc_TtCopy( pTruth, pTruthP, Abc_Truth6WordNum(p->pPars->nLutSize), Abc_LitIsCompl(iFunc) );
assert( pCnfIds[Id] >= 0 && pCnfIds[Id] < nVars );
Vec_IntWriteEntry( pCnf->vMapping, pCnfIds[Id], Vec_IntSize(pCnf->vMapping) );
Vec_IntPush( pCnf->vMapping, Mf_CutSize(pCut) );
for ( k = 0; k < Mf_CutSize(pCut); k++ )
Vec_IntPush( pCnf->vMapping, pCnfIds[pCut[k+1]] );
Vec_IntPush( pCnf->vMapping, (unsigned)pTruth[0] );
if ( Mf_CutSize(pCut) >= 6 )
{
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[0] >> 32) );
if ( Mf_CutSize(pCut) >= 7 )
{
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[1]) );
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[1] >> 32) );
}
if ( Mf_CutSize(pCut) >= 8 )
{
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[2]) );
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[2] >> 32) );
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[3]) );
Vec_IntPush( pCnf->vMapping, (unsigned)(pTruth[3] >> 32) );
}
}
}
}
// constant clause
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
pCnf->pClauses[0][iLit++] = Abc_Var2Lit(pCnfIds[0], 1);
assert( iCla == nClas );
assert( iLit == nLits );
// add closing pointer
pCnf->pClauses[iCla++] = pCnf->pClauses[0] + iLit;
// cleanup
Vec_IntFree( vCnfs );
// create mapping of objects into their clauses
if ( fCnfObjIds )
{
pCnf->pObj2Clause = ABC_FALLOC( int, Gia_ManObjNum(p->pGia) );
pCnf->pObj2Count = ABC_FALLOC( int, Gia_ManObjNum(p->pGia) );
for ( i = 0; i < pCnf->nClauses; i++ )
{
Id = Abc_Lit2Var(pCnf->pClauses[i][0]);
if ( pCnf->pObj2Clause[Id] == -1 )
{
pCnf->pObj2Clause[Id] = i;
pCnf->pObj2Count[Id] = 1;
}
else
{
assert( pCnf->pObj2Count[Id] > 0 );
pCnf->pObj2Count[Id]++;
}
}
}
else
{
if ( p->pGia != p->pGia0 ) // diff managers - create map for CIs/COs
{
pCnf->pVarNums = ABC_FALLOC( int, Gia_ManObjNum(p->pGia0) );
Gia_ManForEachCiId( p->pGia0, Id, i )
pCnf->pVarNums[Id] = pCnfIds[Gia_ManCiIdToId(p->pGia, i)];
Gia_ManForEachCoId( p->pGia0, Id, i )
pCnf->pVarNums[Id] = pCnfIds[Gia_ManCoIdToId(p->pGia, i)];
/*
// transform polarity of the internal nodes
Gia_ManSetPhase( p->pGia );
Gia_ManForEachCo( p->pGia, pObj, i )
pObj->fPhase = 0;
for ( i = 0; i < pCnf->nLiterals; i++ )
if ( Gia_ManObj(p->pGia, Abc_Lit2Var(pCnf->pClauses[0][i]))->fPhase )
pCnf->pClauses[0][i] = Abc_LitNot( pCnf->pClauses[0][i] );
*/
}
else
pCnf->pVarNums = Vec_IntReleaseArray(vCnfIds);
}
Vec_IntFree( vCnfIds );
return pCnf;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Mf_CutComputeTruth6( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, int fCompl0, int fCompl1, Mf_Cut_t * pCutR, int fIsXor )
{
// extern int Mf_ManTruthCanonicize( word * t, int nVars );
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = fIsXor ? t0 ^ t1 : t0 & t1;
if ( (fCompl = (int)(t & 1)) ) t = ~t;
if ( !p->pPars->fCnfObjIds )
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) )
Vec_IntPush( &p->vCnfSizes, Abc_Tt6CnfSize(t, pCutR->nLeaves) );
// p->nCutMux += Mf_ManTtIsMux( t );
assert( (int)pCutR->nLeaves <= nOldSupp );
// Mf_ManTruthCanonicize( &t, pCutR->nLeaves );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Mf_CutComputeTruth( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, int fCompl0, int fCompl1, Mf_Cut_t * pCutR, int fIsXor )
{
if ( p->pPars->nLutSize <= 6 )
return Mf_CutComputeTruth6( p, pCut0, pCut1, fCompl0, fCompl1, pCutR, fIsXor );
{
word uTruth[MF_TT_WORDS], uTruth0[MF_TT_WORDS], uTruth1[MF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word * pTruth1 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
if ( fIsXor )
Abc_TtXor( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] ^ uTruth1[0]) & 1)) );
else
Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] & uTruth1[0]) & 1)) );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
//Kit_DsdPrintFromTruth( uTruth, pCutR->nLeaves ), printf("\n" ), printf("\n" );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) && LutSize <= 8 )
Vec_IntPush( &p->vCnfSizes, Abc_Tt8CnfSize(uTruth, pCutR->nLeaves) );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
static inline int Mf_CutComputeTruthMux6( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Mf_Cut_t * pCutR )
{
int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t;
word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0;
if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1;
if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC;
t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
t = (tC & t1) | (~tC & t0);
if ( (fCompl = (int)(t & 1)) ) t = ~t;
pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves );
assert( (int)(t & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, &t);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) )
Vec_IntPush( &p->vCnfSizes, Abc_Tt6CnfSize(t, pCutR->nLeaves) );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
static inline int Mf_CutComputeTruthMux( Mf_Man_t * p, Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Mf_Cut_t * pCutR )
{
if ( p->pPars->nLutSize <= 6 )
return Mf_CutComputeTruthMux6( p, pCut0, pCut1, pCutC, fCompl0, fCompl1, fComplC, pCutR );
{
word uTruth[MF_TT_WORDS], uTruth0[MF_TT_WORDS], uTruth1[MF_TT_WORDS], uTruthC[MF_TT_WORDS];
int nOldSupp = pCutR->nLeaves, truthId;
int LutSize = p->pPars->nLutSize, fCompl;
int nWords = Abc_Truth6WordNum(LutSize);
word * pTruth0 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc));
word * pTruth1 = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc));
word * pTruthC = Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc));
Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 );
Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 );
Abc_TtCopy( uTruthC, pTruthC, nWords, Abc_LitIsCompl(pCutC->iFunc) ^ fComplC );
Abc_TtExpand( uTruth0, LutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruth1, LutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtExpand( uTruthC, LutSize, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves );
Abc_TtMux( uTruth, uTruthC, uTruth1, uTruth0, nWords );
fCompl = (int)(uTruth[0] & 1);
if ( fCompl ) Abc_TtNot( uTruth, nWords );
pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, LutSize );
assert( (uTruth[0] & 1) == 0 );
truthId = Vec_MemHashInsert(p->vTtMem, uTruth);
pCutR->iFunc = Abc_Var2Lit( truthId, fCompl );
if ( p->pPars->fGenCnf && truthId == Vec_IntSize(&p->vCnfSizes) && LutSize <= 8 )
Vec_IntPush( &p->vCnfSizes, Abc_Tt8CnfSize(uTruth, pCutR->nLeaves) );
assert( (int)pCutR->nLeaves <= nOldSupp );
return (int)pCutR->nLeaves < nOldSupp;
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Mf_CutCountBits( word i )
{
i = i - ((i >> 1) & 0x5555555555555555);
i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333);
i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F);
return (i*(0x0101010101010101))>>56;
}
static inline word Mf_CutGetSign( int * pLeaves, int nLeaves )
{
word Sign = 0; int i;
for ( i = 0; i < nLeaves; i++ )
Sign |= ((word)1) << (pLeaves[i] & 0x3F);
return Sign;
}
static inline int Mf_CutCreateUnit( Mf_Cut_t * p, int i )
{
p->Delay = 0;
p->Flow = 0;
p->iFunc = 2;
p->nLeaves = 1;
p->pLeaves[0] = i;
p->Sign = ((word)1) << (i & 0x3F);
return 1;
}
static inline void Mf_CutPrint( Mf_Man_t * p, Mf_Cut_t * pCut )
{
int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia));
printf( "%d {", pCut->nLeaves );
for ( i = 0; i < (int)pCut->nLeaves; i++ )
printf( " %*d", nDigits, pCut->pLeaves[i] );
for ( ; i < (int)p->pPars->nLutSize; i++ )
printf( " %*s", nDigits, " " );
printf( " } D = %4d A = %9.4f F = %6d ",
pCut->Delay, pCut->Flow, pCut->iFunc );
if ( p->vTtMem )
{
if ( p->pPars->fGenCnf )
printf( "CNF = %2d ", Vec_IntEntry(&p->vCnfSizes, Abc_Lit2Var(pCut->iFunc)) );
Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves );
}
else
printf( "\n" );
}
static inline int Mf_ManPrepareCuts( Mf_Cut_t * pCuts, Mf_Man_t * p, int iObj, int fAddUnit )
{
if ( Mf_ManObj(p, iObj)->iCutSet )
{
Mf_Cut_t * pMfCut = pCuts;
int i, * pCut, * pList = Mf_ObjCutSet(p, iObj);
Mf_SetForEachCut( pList, pCut, i )
{
pMfCut->Delay = 0;
pMfCut->Flow = 0;
pMfCut->iFunc = Mf_CutFunc( pCut );
pMfCut->nLeaves = Mf_CutSize( pCut );
pMfCut->Sign = Mf_CutGetSign( pCut+1, Mf_CutSize(pCut) );
memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Mf_CutSize(pCut) );
pMfCut++;
}
if ( fAddUnit && pCuts->nLeaves > 1 )
return pList[0] + Mf_CutCreateUnit( pMfCut, iObj );
return pList[0];
}
return Mf_CutCreateUnit( pCuts, iObj );
}
static inline int Mf_ManSaveCuts( Mf_Man_t * p, Mf_Cut_t ** pCuts, int nCuts )
{
int i, * pPlace, iCur, nInts = 1;
for ( i = 0; i < nCuts; i++ )
nInts += pCuts[i]->nLeaves + 1;
if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF )
p->iCur = ((p->iCur >> 16) + 1) << 16;
if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) )
Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) );
iCur = p->iCur; p->iCur += nInts;
pPlace = Mf_ManCutSet( p, iCur );
*pPlace++ = nCuts;
for ( i = 0; i < nCuts; i++ )
{
*pPlace++ = Mf_CutSetBoth(pCuts[i]->nLeaves, pCuts[i]->iFunc);
memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves );
pPlace += pCuts[i]->nLeaves;
}
return iCur;
}
static inline void Mf_ObjSetBestCut( int * pCuts, int * pCut )
{
assert( pCuts < pCut );
if ( ++pCuts < pCut )
{
int pTemp[MF_CUT_MAX*(MF_LEAF_MAX+2)];
int nBlock = pCut - pCuts;
int nSize = Mf_CutSize(pCut) + 1;
memmove( pTemp, pCuts, sizeof(int) * nBlock );
memmove( pCuts, pCut, sizeof(int) * nSize );
memmove( pCuts + nSize, pTemp, sizeof(int) * nBlock );
}
}
/**Function*************************************************************
Synopsis [Check correctness of cuts.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Mf_CutCheck( Mf_Cut_t * pBase, Mf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int nSizeB = pBase->nLeaves;
int nSizeC = pCut->nLeaves;
int i, * pB = pBase->pLeaves;
int k, * pC = pCut->pLeaves;
for ( i = 0; i < nSizeC; i++ )
{
for ( k = 0; k < nSizeB; k++ )
if ( pC[i] == pB[k] )
break;
if ( k == nSizeB )
return 0;
}
return 1;
}
static inline int Mf_SetCheckArray( Mf_Cut_t ** ppCuts, int nCuts )
{
Mf_Cut_t * pCut0, * pCut1;
int i, k, m, n, Value;
assert( nCuts > 0 );
for ( i = 0; i < nCuts; i++ )
{
pCut0 = ppCuts[i];
assert( pCut0->nLeaves <= MF_LEAF_MAX );
assert( pCut0->Sign == Mf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) );
// check duplicates
for ( m = 0; m < (int)pCut0->nLeaves; m++ )
for ( n = m + 1; n < (int)pCut0->nLeaves; n++ )
assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] );
// check pairs
for ( k = 0; k < nCuts; k++ )
{
pCut1 = ppCuts[k];
if ( pCut0 == pCut1 )
continue;
// check containments
Value = Mf_CutCheck( pCut0, pCut1 );
assert( Value == 0 );
}
}
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Mf_CutMergeOrder( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCut, int nLutSize )
{
int nSize0 = pCut0->nLeaves;
int nSize1 = pCut1->nLeaves;
int i, * pC0 = pCut0->pLeaves;
int k, * pC1 = pCut1->pLeaves;
int c, * pC = pCut->pLeaves;
// the case of the largest cut sizes
if ( nSize0 == nLutSize && nSize1 == nLutSize )
{
for ( i = 0; i < nSize0; i++ )
{
if ( pC0[i] != pC1[i] ) return 0;
pC[i] = pC0[i];
}
pCut->nLeaves = nLutSize;
pCut->iFunc = MF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
// compare two cuts with different numbers
i = k = c = 0;
if ( nSize0 == 0 ) goto FlushCut1;
if ( nSize1 == 0 ) goto FlushCut0;
while ( 1 )
{
if ( c == nLutSize ) return 0;
if ( pC0[i] < pC1[k] )
{
pC[c++] = pC0[i++];
if ( i >= nSize0 ) goto FlushCut1;
}
else if ( pC0[i] > pC1[k] )
{
pC[c++] = pC1[k++];
if ( k >= nSize1 ) goto FlushCut0;
}
else
{
pC[c++] = pC0[i++]; k++;
if ( i >= nSize0 ) goto FlushCut1;
if ( k >= nSize1 ) goto FlushCut0;
}
}
FlushCut0:
if ( c + nSize0 > nLutSize + i ) return 0;
while ( i < nSize0 )
pC[c++] = pC0[i++];
pCut->nLeaves = c;
pCut->iFunc = MF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
FlushCut1:
if ( c + nSize1 > nLutSize + k ) return 0;
while ( k < nSize1 )
pC[c++] = pC1[k++];
pCut->nLeaves = c;
pCut->iFunc = MF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign;
return 1;
}
static inline int Mf_CutMergeOrderMux( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1, Mf_Cut_t * pCut2, Mf_Cut_t * pCut, int nLutSize )
{
int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves;
int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves;
int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves;
int xMin, c = 0, * pC = pCut->pLeaves;
while ( 1 )
{
x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0];
x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1];
x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2];
xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 );
if ( xMin == ABC_INFINITY ) break;
if ( c == nLutSize ) return 0;
pC[c++] = xMin;
if (x0 == xMin) i0++;
if (x1 == xMin) i1++;
if (x2 == xMin) i2++;
}
pCut->nLeaves = c;
pCut->iFunc = MF_NO_FUNC;
pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign;
return 1;
}
static inline int Mf_SetCutIsContainedOrder( Mf_Cut_t * pBase, Mf_Cut_t * pCut ) // check if pCut is contained in pBase
{
int i, nSizeB = pBase->nLeaves;
int k, nSizeC = pCut->nLeaves;
if ( nSizeB == nSizeC )
{
for ( i = 0; i < nSizeB; i++ )
if ( pBase->pLeaves[i] != pCut->pLeaves[i] )
return 0;
return 1;
}
assert( nSizeB > nSizeC );
if ( nSizeC == 0 )
return 1;
for ( i = k = 0; i < nSizeB; i++ )
{
if ( pBase->pLeaves[i] > pCut->pLeaves[k] )
return 0;
if ( pBase->pLeaves[i] == pCut->pLeaves[k] )
{
if ( ++k == nSizeC )
return 1;
}
}
return 0;
}
static inline int Mf_SetLastCutIsContained( Mf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Mf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) )
return 1;
return 0;
}
static inline int Mf_SetLastCutContainsArea( Mf_Cut_t ** pCuts, int nCuts )
{
int i, k, fChanges = 0;
for ( i = 0; i < nCuts; i++ )
if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Mf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) )
pCuts[i]->nLeaves = MF_NO_LEAF, fChanges = 1;
if ( !fChanges )
return nCuts;
for ( i = k = 0; i <= nCuts; i++ )
{
if ( pCuts[i]->nLeaves == MF_NO_LEAF )
continue;
if ( k < i )
ABC_SWAP( Mf_Cut_t *, pCuts[k], pCuts[i] );
k++;
}
return k - 1;
}
static inline int Mf_CutCompareArea( Mf_Cut_t * pCut0, Mf_Cut_t * pCut1 )
{
if ( pCut0->Flow < pCut1->Flow - MF_EPSILON ) return -1;
if ( pCut0->Flow > pCut1->Flow + MF_EPSILON ) return 1;
if ( pCut0->Delay < pCut1->Delay ) return -1;
if ( pCut0->Delay > pCut1->Delay ) return 1;
if ( pCut0->nLeaves < pCut1->nLeaves ) return -1;
if ( pCut0->nLeaves > pCut1->nLeaves ) return 1;
return 0;
}
static inline void Mf_SetSortByArea( Mf_Cut_t ** pCuts, int nCuts )
{
int i;
for ( i = nCuts; i > 0; i-- )
{
if ( Mf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 )
return;
ABC_SWAP( Mf_Cut_t *, pCuts[i - 1], pCuts[i] );
}
}
static inline int Mf_SetAddCut( Mf_Cut_t ** pCuts, int nCuts, int nCutNum )
{
if ( nCuts == 0 )
return 1;
nCuts = Mf_SetLastCutContainsArea(pCuts, nCuts);
Mf_SetSortByArea( pCuts, nCuts );
return Abc_MinInt( nCuts + 1, nCutNum - 1 );
}
static inline int Mf_CutArea( Mf_Man_t * p, int nLeaves, int iFunc )
{
if ( nLeaves < 2 )
return 0;
if ( p->pPars->fGenCnf )
return Vec_IntEntry(&p->vCnfSizes, Abc_Lit2Var(iFunc));
if ( p->pPars->fOptEdge )
return nLeaves + p->pPars->nAreaTuner;
return 1;
}
static inline void Mf_CutParams( Mf_Man_t * p, Mf_Cut_t * pCut, float FlowRefs )
{
Mf_Obj_t * pBest;
int i, nLeaves = pCut->nLeaves;
assert( nLeaves <= p->pPars->nLutSize );
pCut->Delay = 0;
pCut->Flow = 0;
for ( i = 0; i < nLeaves; i++ )
{
pBest = Mf_ManObj(p, pCut->pLeaves[i]);
pCut->Delay = Abc_MaxInt( pCut->Delay, pBest->Delay );
pCut->Flow += pBest->Flow;
}
pCut->Delay += (int)(nLeaves > 1);
pCut->Flow = (pCut->Flow + Mf_CutArea(p, nLeaves, pCut->iFunc)) / FlowRefs;
}
void Mf_ObjMergeOrder( Mf_Man_t * p, int iObj )
{
Mf_Cut_t pCuts0[MF_CUT_MAX], pCuts1[MF_CUT_MAX], pCuts[MF_CUT_MAX], * pCutsR[MF_CUT_MAX];
Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj);
Mf_Obj_t * pBest = Mf_ManObj(p, iObj);
int nLutSize = p->pPars->nLutSize;
int nCutNum = p->pPars->nCutNum;
int nCuts0 = Mf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1);
int nCuts1 = Mf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1);
int fComp0 = Gia_ObjFaninC0(pObj);
int fComp1 = Gia_ObjFaninC1(pObj);
int iSibl = Gia_ObjSibl(p->pGia, iObj);
Mf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1;
int i, nCutsR = 0;
for ( i = 0; i < nCutNum; i++ )
pCutsR[i] = pCuts + i;
if ( iSibl )
{
Mf_Cut_t pCuts2[MF_CUT_MAX];
Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj);
int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE);
int nCuts2 = Mf_ManPrepareCuts(pCuts2, p, iSibl, 0);
Mf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
*pCutsR[nCutsR] = *pCut2;
if ( pCutsR[nCutsR]->iFunc >= 0 )
pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE );
Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs );
nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
if ( Gia_ObjIsMuxId(p->pGia, iObj) )
{
Mf_Cut_t pCuts2[MF_CUT_MAX];
int nCuts2 = Mf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1);
int fComp2 = Gia_ObjFaninC2(p->pGia, pObj);
Mf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2;
p->CutCount[0] += nCuts0 * nCuts1 * nCuts2;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ )
{
if ( Mf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Mf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) )
continue;
if ( Mf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Mf_CutComputeTruthMux(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) )
pCutsR[nCutsR]->Sign = Mf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs );
nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
else
{
int fIsXor = Gia_ObjIsXor(pObj);
p->CutCount[0] += nCuts0 * nCuts1;
for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ )
for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ )
{
if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Mf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize )
continue;
p->CutCount[1]++;
if ( !Mf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) )
continue;
if ( Mf_SetLastCutIsContained(pCutsR, nCutsR) )
continue;
p->CutCount[2]++;
if ( p->pPars->fCutMin && Mf_CutComputeTruth(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) )
pCutsR[nCutsR]->Sign = Mf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves);
Mf_CutParams( p, pCutsR[nCutsR], pBest->nFlowRefs );
nCutsR = Mf_SetAddCut( pCutsR, nCutsR, nCutNum );
}
}
// debug printout
if ( 0 )
// if ( iObj % 1000 == 0 )
// if ( iObj == 474 )
{
printf( "*** Obj = %d FlowRefs = %.2f MapRefs = %2d\n", iObj, pBest->nFlowRefs, pBest->nMapRefs );
for ( i = 0; i < nCutsR; i++ )
Mf_CutPrint( p, pCutsR[i] );
printf( "\n" );
}
// store the cutset
pBest->Flow = pCutsR[0]->Flow;
pBest->Delay = pCutsR[0]->Delay;
pBest->iCutSet = Mf_ManSaveCuts( p, pCutsR, nCutsR );
// verify
assert( nCutsR > 0 && nCutsR < nCutNum );
// assert( Mf_SetCheckArray(pCutsR, nCutsR) );
p->nCutCounts[pCutsR[0]->nLeaves]++;
p->CutCount[3] += nCutsR;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs )
{
int fDiscount = 1;
Gia_Obj_t * pObj, * pCtrl, * pData0, * pData1;
int i, Id;
Vec_IntFill( vRefs, Gia_ManObjNum(p), 0 );
Gia_ManForEachAnd( p, pObj, i )
{
if ( Gia_ObjIsAnd(Gia_ObjFanin0(pObj)) )
Vec_IntAddToEntry( vRefs, Gia_ObjFaninId0(pObj, i), 1 );
if ( Gia_ObjIsAnd(Gia_ObjFanin1(pObj)) )
Vec_IntAddToEntry( vRefs, Gia_ObjFaninId1(pObj, i), 1 );
if ( p->pMuxes )
{
if ( Gia_ObjIsMuxId(p, i) && Gia_ObjIsAnd(Gia_ObjFanin2(p, pObj)) )
Vec_IntAddToEntry( vRefs, Gia_ObjFaninId2(p, i), 1 );
}
else if ( fDiscount && Gia_ObjIsMuxType(pObj) ) // discount XOR/MUX
{
pCtrl = Gia_Regular(Gia_ObjRecognizeMux(pObj, &pData1, &pData0));
pData0 = Gia_Regular(pData0);
pData1 = Gia_Regular(pData1);
if ( Gia_ObjIsAnd(pCtrl) )
Vec_IntAddToEntry( vRefs, Gia_ObjId(p, pCtrl), -1 );
if ( pData0 == pData1 && Gia_ObjIsAnd(pData0) )
Vec_IntAddToEntry( vRefs, Gia_ObjId(p, pData0), -1 );
}
}
Gia_ManForEachCoDriverId( p, Id, i )
if ( Gia_ObjIsAnd(Gia_ManObj(p, Id)) )
Vec_IntAddToEntry( vRefs, Id, 1 );
for ( i = 0; i < Vec_IntSize(vRefs); i++ )
Vec_IntUpdateEntry( vRefs, i, 1 );
}
int Mf_ManSetMapRefs( Mf_Man_t * p )
{
float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1));
int * pCut, i, k, Id;
// compute delay
int Delay = 0;
Gia_ManForEachCoDriverId( p->pGia, Id, i )
Delay = Abc_MaxInt( Delay, Mf_ManObj(p, Id)->Delay );
// check delay target
if ( p->pPars->DelayTarget == -1 && p->pPars->nRelaxRatio )
p->pPars->DelayTarget = (int)((float)Delay * (100.0 + p->pPars->nRelaxRatio) / 100.0);
if ( p->pPars->DelayTarget != -1 )
{
if ( Delay < p->pPars->DelayTarget + 0.01 )
Delay = p->pPars->DelayTarget;
else if ( p->pPars->nRelaxRatio == 0 )
Abc_Print( 0, "Relaxing user-specified delay target from %d to %d.\n", p->pPars->DelayTarget, Delay );
}
p->pPars->Delay = Delay;
// check references
// Gia_ManForEachAndId( p->pGia, i )
// assert( Mf_ManObj(p, i)->nMapRefs == 0 );
// compute area and edges
if ( !p->fUseEla )
Gia_ManForEachCoDriverId( p->pGia, Id, i )
Mf_ObjMapRefInc( p, Id );
p->pPars->Area = p->pPars->Edge = p->pPars->Clause = 0;
Gia_ManForEachAndReverseId( p->pGia, i )
{
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
if ( !p->fUseEla )
for ( k = 1; k <= Mf_CutSize(pCut); k++ )
Mf_ObjMapRefInc( p, pCut[k] );
p->pPars->Edge += Mf_CutSize(pCut);
p->pPars->Area++;
if ( p->pPars->fGenCnf )
p->pPars->Clause += Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut));
}
// blend references
for ( i = 0; i < Gia_ManObjNum(p->pGia); i++ )
p->pLfObjs[i].nFlowRefs = Coef * p->pLfObjs[i].nFlowRefs + (1.0 - Coef) * Abc_MaxFloat(1, p->pLfObjs[i].nMapRefs);
// p->pLfObjs[i]. = 0.2 * p->pLfObjs[i]. + 0.8 * Abc_MaxFloat(1, p->pLfObjs[i].nMapRefs);
return p->pPars->Area;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Gia_Man_t * Mf_ManDeriveMapping( Mf_Man_t * p )
{
Vec_Int_t * vMapping;
int i, k, * pCut;
assert( !p->pPars->fCutMin && p->pGia->vMapping == NULL );
vMapping = Vec_IntAlloc( Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( vMapping, Gia_ManObjNum(p->pGia), 0 );
Gia_ManForEachAndId( p->pGia, i )
{
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
Vec_IntWriteEntry( vMapping, i, Vec_IntSize(vMapping) );
Vec_IntPush( vMapping, Mf_CutSize(pCut) );
for ( k = 1; k <= Mf_CutSize(pCut); k++ )
Vec_IntPush( vMapping, pCut[k] );
Vec_IntPush( vMapping, i );
}
assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) );
p->pGia->vMapping = vMapping;
return p->pGia;
}
Gia_Man_t * Mf_ManDeriveMappingCoarse( Mf_Man_t * p )
{
Gia_Man_t * pNew, * pGia = p->pGia;
Gia_Obj_t * pObj;
int i, k, * pCut;
assert( !p->pPars->fCutMin && pGia->pMuxes );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(pGia) );
pNew->pName = Abc_UtilStrsav( pGia->pName );
pNew->pSpec = Abc_UtilStrsav( pGia->pSpec );
// map primary inputs
Gia_ManConst0(pGia)->Value = 0;
Gia_ManForEachCi( pGia, pObj, i )
pObj->Value = Gia_ManAppendCi( pNew );
// start mapping
pNew->vMapping = Vec_IntAlloc( Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 );
Vec_IntFill( pNew->vMapping, Gia_ManObjNum(pGia) + 2*Gia_ManXorNum(pGia) + 2*Gia_ManMuxNum(pGia), 0 );
// iterate through nodes used in the mapping
Gia_ManForEachAnd( pGia, pObj, i )
{
if ( Gia_ObjIsMuxId(pGia, i) )
pObj->Value = Gia_ManAppendMux( pNew, Gia_ObjFanin2Copy(pGia, pObj), Gia_ObjFanin1Copy(pObj), Gia_ObjFanin0Copy(pObj) );
else if ( Gia_ObjIsXor(pObj) )
pObj->Value = Gia_ManAppendXor( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
else
pObj->Value = Gia_ManAppendAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) );
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
Vec_IntWriteEntry( pNew->vMapping, Abc_Lit2Var(pObj->Value), Vec_IntSize(pNew->vMapping) );
Vec_IntPush( pNew->vMapping, Mf_CutSize(pCut));
for ( k = 1; k <= Mf_CutSize(pCut); k++ )
Vec_IntPush( pNew->vMapping, Abc_Lit2Var(Gia_ManObj(pGia, pCut[k])->Value) );
Vec_IntPush( pNew->vMapping, Abc_Lit2Var(pObj->Value) );
}
Gia_ManForEachCo( pGia, pObj, i )
pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) );
Gia_ManSetRegNum( pNew, Gia_ManRegNum(pGia) );
assert( Vec_IntCap(pNew->vMapping) == 16 || Vec_IntSize(pNew->vMapping) == Vec_IntCap(pNew->vMapping) );
return pNew;
}
Gia_Man_t * Mf_ManDeriveMappingGia( Mf_Man_t * p )
{
Gia_Man_t * pNew;
Gia_Obj_t * pObj;
Vec_Int_t * vCopies = Vec_IntStartFull( Gia_ManObjNum(p->pGia) );
Vec_Int_t * vMapping = Vec_IntStart( 2 * Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + 2 * (int)p->pPars->Area );
Vec_Int_t * vMapping2 = Vec_IntStart( (int)p->pPars->Edge + 2 * (int)p->pPars->Area + 1000 );
Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 );
Vec_Int_t * vLeaves = Vec_IntAlloc( 16 );
int i, k, Id, iLit, * pCut;
word uTruth = 0, * pTruth = &uTruth;
assert( p->pPars->fCutMin );
// create new manager
pNew = Gia_ManStart( Gia_ManObjNum(p->pGia) );
pNew->pName = Abc_UtilStrsav( p->pGia->pName );
pNew->pSpec = Abc_UtilStrsav( p->pGia->pSpec );
// map primary inputs
Vec_IntWriteEntry( vCopies, 0, 0 );
Gia_ManForEachCiId( p->pGia, Id, i )
Vec_IntWriteEntry( vCopies, Id, Gia_ManAppendCi(pNew) );
// iterate through nodes used in the mapping
Gia_ManForEachAnd( p->pGia, pObj, i )
{
if ( !Mf_ObjMapRefNum(p, i) )
continue;
pCut = Mf_ObjCutBest( p, i );
if ( Mf_CutSize(pCut) == 0 )
{
assert( Abc_Lit2Var(Mf_CutFunc(pCut)) == 0 );
Vec_IntWriteEntry( vCopies, i, Mf_CutFunc(pCut) );
continue;
}
if ( Mf_CutSize(pCut) == 1 )
{
assert( Abc_Lit2Var(Mf_CutFunc(pCut)) == 1 );
iLit = Vec_IntEntry( vCopies, pCut[1] );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(Mf_CutFunc(pCut))) );
continue;
}
Vec_IntClear( vLeaves );
for ( k = 1; k <= Mf_CutSize(pCut); k++ )
Vec_IntPush( vLeaves, Vec_IntEntry(vCopies, pCut[k]) );
pTruth = Vec_MemReadEntry( p->vTtMem, Abc_Lit2Var(Mf_CutFunc(pCut)) );
iLit = Kit_TruthToGia( pNew, (unsigned *)pTruth, Vec_IntSize(vLeaves), vCover, vLeaves, 0 );
Vec_IntWriteEntry( vCopies, i, Abc_LitNotCond(iLit, Abc_LitIsCompl(Mf_CutFunc(pCut))) );
// create mapping
Vec_IntSetEntry( vMapping, Abc_Lit2Var(iLit), Vec_IntSize(vMapping2) );
Vec_IntPush( vMapping2, Vec_IntSize(vLeaves) );
Vec_IntForEachEntry( vLeaves, iLit, k )
Vec_IntPush( vMapping2, Abc_Lit2Var(iLit) );
Vec_IntPush( vMapping2, Abc_Lit2Var(Vec_IntEntry(vCopies, i)) );
}
Gia_ManForEachCo( p->pGia, pObj, i )
{
iLit = Vec_IntEntry( vCopies, Gia_ObjFaninId0p(p->pGia, pObj) );
iLit = Gia_ManAppendCo( pNew, Abc_LitNotCond(iLit, Gia_ObjFaninC0(pObj)) );
}
Vec_IntFree( vCopies );
Vec_IntFree( vCover );
Vec_IntFree( vLeaves );
// finish mapping
if ( Vec_IntSize(vMapping) > Gia_ManObjNum(pNew) )
Vec_IntShrink( vMapping, Gia_ManObjNum(pNew) );
else
Vec_IntFillExtra( vMapping, Gia_ManObjNum(pNew), 0 );
assert( Vec_IntSize(vMapping) == Gia_ManObjNum(pNew) );
Vec_IntForEachEntry( vMapping, iLit, i )
if ( iLit > 0 )
Vec_IntAddToEntry( vMapping, i, Gia_ManObjNum(pNew) );
Vec_IntAppend( vMapping, vMapping2 );
Vec_IntFree( vMapping2 );
// attach mapping and packing
assert( pNew->vMapping == NULL );
pNew->vMapping = vMapping;
Gia_ManSetRegNum( pNew, Gia_ManRegNum(p->pGia) );
return pNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Mf_Man_t * Mf_ManAlloc( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Mf_Man_t * p;
Vec_Int_t * vFlowRefs;
int i, Entry;
assert( pPars->nCutNum > 1 && pPars->nCutNum <= MF_CUT_MAX );
assert( pPars->nLutSize > 1 && pPars->nLutSize <= MF_LEAF_MAX );
ABC_FREE( pGia->pRefs );
Vec_IntFreeP( &pGia->vMapping );
if ( Gia_ManHasChoices(pGia) )
Gia_ManSetPhase(pGia);
p = ABC_CALLOC( Mf_Man_t, 1 );
p->clkStart = Abc_Clock();
p->pGia = pGia;
p->pPars = pPars;
p->vTtMem = pPars->fCutMin ? Vec_MemAllocForTT( pPars->nLutSize, 0 ) : NULL;
p->pLfObjs = ABC_CALLOC( Mf_Obj_t, Gia_ManObjNum(pGia) );
p->iCur = 2;
Vec_PtrGrow( &p->vPages, 256 );
if ( pPars->fGenCnf )
{
Vec_IntGrow( &p->vCnfSizes, 10000 );
Vec_IntPush( &p->vCnfSizes, 1 );
Vec_IntPush( &p->vCnfSizes, 2 );
Vec_IntGrow( &p->vCnfMem, 10000 );
}
vFlowRefs = Vec_IntAlloc(0);
Mf_ManSetFlowRefs( pGia, vFlowRefs );
Vec_IntForEachEntry( vFlowRefs, Entry, i )
p->pLfObjs[i].nFlowRefs = Entry;
Vec_IntFree(vFlowRefs);
return p;
}
void Mf_ManFree( Mf_Man_t * p )
{
assert( !p->pPars->fGenCnf || Vec_IntSize(&p->vCnfSizes) == Vec_MemEntryNum(p->vTtMem) );
if ( p->pPars->fCutMin )
Vec_MemHashFree( p->vTtMem );
if ( p->pPars->fCutMin )
Vec_MemFree( p->vTtMem );
Vec_PtrFreeData( &p->vPages );
ABC_FREE( p->vCnfSizes.pArray );
ABC_FREE( p->vCnfMem.pArray );
ABC_FREE( p->vPages.pArray );
ABC_FREE( p->vTemp.pArray );
ABC_FREE( p->pLfObjs );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Mf_ManSetDefaultPars( Jf_Par_t * pPars )
{
memset( pPars, 0, sizeof(Jf_Par_t) );
pPars->nLutSize = 6;
pPars->nCutNum = 8;
pPars->nProcNum = 0;
pPars->nRounds = 2;
pPars->nRoundsEla = 1;
pPars->nRelaxRatio = 0;
pPars->nCoarseLimit = 3;
pPars->nAreaTuner = 1;
pPars->nVerbLimit = 5;
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 1;
pPars->fCutMin = 0;
pPars->fGenCnf = 0;
pPars->fPureAig = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
pPars->nLutSizeMax = MF_LEAF_MAX;
pPars->nCutNumMax = MF_CUT_MAX;
}
void Mf_ManPrintStats( Mf_Man_t * p, char * pTitle )
{
if ( !p->pPars->fVerbose )
return;
printf( "%s : ", pTitle );
printf( "Level =%6lu ", (long)p->pPars->Delay );
printf( "Area =%9lu ", (long)p->pPars->Area );
printf( "Edge =%9lu ", (long)p->pPars->Edge );
if ( p->pPars->fGenCnf )
printf( "CNF =%9lu ", (long)p->pPars->Clause );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
fflush( stdout );
}
void Mf_ManPrintInit( Mf_Man_t * p )
{
if ( !p->pPars->fVerbose )
return;
printf( "LutSize = %d ", p->pPars->nLutSize );
printf( "CutNum = %d ", p->pPars->nCutNum );
printf( "Iter = %d ", p->pPars->nRounds + p->pPars->nRoundsEla );
printf( "Edge = %d ", p->pPars->fOptEdge );
printf( "CutMin = %d ", p->pPars->fCutMin );
printf( "Coarse = %d ", p->pPars->fCoarsen );
printf( "CNF = %d ", p->pPars->fGenCnf );
printf( "\n" );
printf( "Computing cuts...\r" );
fflush( stdout );
}
void Mf_ManPrintQuit( Mf_Man_t * p, Gia_Man_t * pNew )
{
float MemGia = Gia_ManMemory(p->pGia) / (1<<20);
float MemMan = 1.0 * sizeof(Mf_Obj_t) * Gia_ManObjNum(p->pGia) / (1<<20);
float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20);
float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0;
float MemMap = Vec_IntMemory(pNew->vMapping) / (1<<20);
if ( p->CutCount[0] == 0 )
p->CutCount[0] = 1;
if ( !p->pPars->fVerbose )
return;
printf( "CutPair = %.0f ", p->CutCount[0] );
printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] );
printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] );
printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] );
printf( "\n" );
printf( "Gia = %.2f MB ", MemGia );
printf( "Man = %.2f MB ", MemMan );
printf( "Cut = %.2f MB ", MemCuts );
printf( "Map = %.2f MB ", MemMap );
printf( "TT = %.2f MB ", MemTt );
printf( "Total = %.2f MB", MemGia + MemMan + MemCuts + MemMap + MemTt );
printf( "\n" );
if ( 1 )
{
int i;
for ( i = 0; i <= p->pPars->nLutSize; i++ )
printf( "%d = %d ", i, p->nCutCounts[i] );
if ( p->vTtMem )
printf( "TT = %d (%.2f %%) ", Vec_MemEntryNum(p->vTtMem), 100.0 * Vec_MemEntryNum(p->vTtMem) / p->CutCount[2] );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart );
}
fflush( stdout );
}
void Mf_ManComputeCuts( Mf_Man_t * p )
{
int i;
Gia_ManForEachAndId( p->pGia, i )
Mf_ObjMergeOrder( p, i );
Mf_ManSetMapRefs( p );
Mf_ManPrintStats( p, (char *)(p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay")) );
}
/**Function*************************************************************
Synopsis [Flow and area.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Mf_CutRef2_rec( Mf_Man_t * p, int * pCut, Vec_Int_t * vTemp, int Limit )
{
int i, Count = Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut));
if ( Limit == 0 ) return Count;
for ( i = 1; i <= Mf_CutSize(pCut); i++ )
{
Vec_IntPush( vTemp, pCut[i] );
if ( !Mf_ObjMapRefInc(p, pCut[i]) && Mf_ManObj(p, pCut[i])->iCutSet )
Count += Mf_CutRef2_rec( p, Mf_ObjCutBest(p, pCut[i]), vTemp, Limit-1 );
}
return Count;
}
static inline int Mf_CutAreaDerefed2( Mf_Man_t * p, int * pCut )
{
int Ela1, iObj, i;
Vec_IntClear( &p->vTemp );
Ela1 = Mf_CutRef2_rec( p, pCut, &p->vTemp, 8 );
Vec_IntForEachEntry( &p->vTemp, iObj, i )
Mf_ObjMapRefDec( p, iObj );
return Ela1;
}
int Mf_CutRef_rec( Mf_Man_t * p, int * pCut )
{
int i, Count = Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut));
for ( i = 1; i <= Mf_CutSize(pCut); i++ )
if ( !Mf_ObjMapRefInc(p, pCut[i]) && Mf_ManObj(p, pCut[i])->iCutSet )
Count += Mf_CutRef_rec( p, Mf_ObjCutBest(p, pCut[i]) );
return Count;
}
int Mf_CutDeref_rec( Mf_Man_t * p, int * pCut )
{
int i, Count = Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut));
for ( i = 1; i <= Mf_CutSize(pCut); i++ )
if ( !Mf_ObjMapRefDec(p, pCut[i]) && Mf_ManObj(p, pCut[i])->iCutSet )
Count += Mf_CutDeref_rec( p, Mf_ObjCutBest(p, pCut[i]) );
return Count;
}
static inline int Mf_CutAreaDerefed( Mf_Man_t * p, int * pCut )
{
int Ela1 = Mf_CutRef_rec( p, pCut );
int Ela2 = Mf_CutDeref_rec( p, pCut );
assert( Ela1 == Ela2 );
return Ela1;
}
static inline float Mf_CutFlow( Mf_Man_t * p, int * pCut, int * pTime )
{
Mf_Obj_t * pObj;
float Flow = 0;
int i, Time = 0;
for ( i = 1; i <= Mf_CutSize(pCut); i++ )
{
pObj = Mf_ManObj( p, pCut[i] );
Time = Abc_MaxInt( Time, pObj->Delay );
Flow += pObj->Flow;
}
*pTime = Time + 1;
return Flow + Mf_CutArea(p, Mf_CutSize(pCut), Mf_CutFunc(pCut));
}
static inline void Mf_ObjComputeBestCut( Mf_Man_t * p, int iObj )
{
Mf_Obj_t * pBest = Mf_ManObj(p, iObj);
int * pCutSet = Mf_ObjCutSet( p, iObj );
int * pCut, * pCutBest = NULL;
int Value1 = -1, Value2 = -1;
int i, Time = 0, TimeBest = ABC_INFINITY;
float Flow, FlowBest = ABC_INFINITY;
if ( p->fUseEla && pBest->nMapRefs )
Value1 = Mf_CutDeref_rec( p, Mf_ObjCutBest(p, iObj) );
Mf_SetForEachCut( pCutSet, pCut, i )
{
assert( !Mf_CutIsTriv(pCut, iObj) );
assert( Mf_CutSize(pCut) <= p->pPars->nLutSize );
Flow = p->fUseEla ? Mf_CutAreaDerefed2(p, pCut) : Mf_CutFlow(p, pCut, &Time);
if ( pCutBest == NULL || FlowBest > Flow + MF_EPSILON || (FlowBest > Flow - MF_EPSILON && TimeBest > Time) )
pCutBest = pCut, FlowBest = Flow, TimeBest = Time;
}
assert( pCutBest != NULL );
if ( p->fUseEla && pBest->nMapRefs )
Value1 = Mf_CutRef_rec( p, pCutBest );
else
pBest->nMapRefs = 0;
assert( Value1 >= Value2 );
if ( p->fUseEla )
Mf_CutFlow( p, pCutBest, &TimeBest );
pBest->Delay = TimeBest;
pBest->Flow = FlowBest / Mf_ManObj(p, iObj)->nFlowRefs;
Mf_ObjSetBestCut( pCutSet, pCutBest );
// Mf_CutPrint( Mf_ObjCutBest(p, iObj) ); printf( "\n" );
}
/**Function*************************************************************
Synopsis [Technology mappping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Mf_ManComputeMapping( Mf_Man_t * p )
{
int i;
Gia_ManForEachAndId( p->pGia, i )
Mf_ObjComputeBestCut( p, i );
Mf_ManSetMapRefs( p );
Mf_ManPrintStats( p, (char *)(p->fUseEla ? "Ela " : (p->Iter ? "Area " : "Delay")) );
}
Gia_Man_t * Mf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
{
Mf_Man_t * p;
Gia_Man_t * pNew, * pCls;
if ( pPars->fGenCnf )
pPars->fCutMin = 1;
if ( Gia_ManHasChoices(pGia) )
pPars->fCutMin = 1, pPars->fCoarsen = 0;
pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia;
p = Mf_ManAlloc( pCls, pPars );
p->pGia0 = pGia;
if ( pPars->fVerbose && pPars->fCoarsen )
{
printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" );
printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" );
}
Mf_ManPrintInit( p );
Mf_ManComputeCuts( p );
for ( p->Iter = 1; p->Iter < p->pPars->nRounds; p->Iter++ )
Mf_ManComputeMapping( p );
p->fUseEla = 1;
for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ )
Mf_ManComputeMapping( p );
if ( pPars->fVeryVerbose && pPars->fCutMin )
Vec_MemDumpTruthTables( p->vTtMem, Gia_ManName(p->pGia), pPars->nLutSize );
if ( pPars->fCutMin )
pNew = Mf_ManDeriveMappingGia( p );
else if ( pPars->fCoarsen )
pNew = Mf_ManDeriveMappingCoarse( p );
else
pNew = Mf_ManDeriveMapping( p );
if ( p->pPars->fGenCnf )
pGia->pData = Mf_ManDeriveCnf( p, p->pPars->fCnfObjIds, p->pPars->fAddOrCla );
// if ( p->pPars->fGenCnf )
// Mf_ManProfileTruths( p );
Gia_ManMappingVerify( pNew );
Mf_ManPrintQuit( p, pNew );
Mf_ManFree( p );
if ( pCls != pGia )
Gia_ManStop( pCls );
return pNew;
}
/**Function*************************************************************
Synopsis [CNF generation]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void * Mf_ManGenerateCnf( Gia_Man_t * pGia, int nLutSize, int fCnfObjIds, int fAddOrCla, int fMapping, int fVerbose )
{
Gia_Man_t * pNew;
Jf_Par_t Pars, * pPars = &Pars;
assert( nLutSize >= 3 && nLutSize <= 8 );
Mf_ManSetDefaultPars( pPars );
pPars->fGenCnf = 1;
pPars->fCoarsen = !fCnfObjIds;
pPars->nLutSize = nLutSize;
pPars->fCnfObjIds = fCnfObjIds;
pPars->fAddOrCla = fAddOrCla;
pPars->fCnfMapping = fMapping;
pPars->fVerbose = fVerbose;
pNew = Mf_ManPerformMapping( pGia, pPars );
Gia_ManStopP( &pNew );
// Cnf_DataPrint( (Cnf_Dat_t *)pGia->pData, 1 );
return pGia->pData;
}
void Mf_ManDumpCnf( Gia_Man_t * p, char * pFileName, int nLutSize, int fCnfObjIds, int fAddOrCla, int fVerbose )
{
abctime clk = Abc_Clock();
Cnf_Dat_t * pCnf;
pCnf = (Cnf_Dat_t *)Mf_ManGenerateCnf( p, nLutSize, fCnfObjIds, fAddOrCla, 0, fVerbose );
Cnf_DataWriteIntoFile( pCnf, pFileName, 0, NULL, NULL );
// if ( fVerbose )
{
printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
Cnf_DataFree(pCnf);
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END