blob: e9c40d04fc4a2852fe09c1529c3faee8c8bec062 [file] [log] [blame]
/**CFile****************************************************************
FileName [sfmTim.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [SAT-based optimization using internal don't-cares.]
Synopsis [Timing manager.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: sfmTim.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sfmInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
struct Sfm_Tim_t_
{
// external
Mio_Library_t * pLib; // library
Scl_Con_t * pExt; // external timing
Abc_Ntk_t * pNtk; // mapped network
int Delay; // the largest delay
int DeltaCrit; // critical delay delta
// timing info
Vec_Int_t vTimArrs; // arrivals (rise/fall)
Vec_Int_t vTimReqs; // required (rise/fall)
// incremental timing
Vec_Wec_t vLevels; // levels
// critical path
Vec_Int_t vPath; // critical path
Vec_Wrd_t vSortData; // node priority order
};
static inline int * Sfm_TimArrId( Sfm_Tim_t * p, int Id ) { return Vec_IntEntryP( &p->vTimArrs, Abc_Var2Lit(Id, 0) ); }
static inline int * Sfm_TimReqId( Sfm_Tim_t * p, int Id ) { return Vec_IntEntryP( &p->vTimReqs, Abc_Var2Lit(Id, 0) ); }
static inline int * Sfm_TimArr( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimArrs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int * Sfm_TimReq( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { return Vec_IntEntryP( &p->vTimReqs, Abc_Var2Lit(Abc_ObjId(pNode), 0) ); }
static inline int Sfm_TimArrMaxId( Sfm_Tim_t * p, int Id ) { int * a = Sfm_TimArrId(p, Id); return Abc_MaxInt(a[0], a[1]); }
static inline int Sfm_TimArrMax( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * a = Sfm_TimArr(p, pNode); return Abc_MaxInt(a[0], a[1]); }
static inline void Sfm_TimSetReq( Sfm_Tim_t * p, Abc_Obj_t * pNode, int t ) { int * r = Sfm_TimReq(p, pNode); r[0] = r[1] = t; }
static inline int Sfm_TimSlack( Sfm_Tim_t * p, Abc_Obj_t * pNode ) { int * r = Sfm_TimReq(p, pNode), * a = Sfm_TimArr(p, pNode); return Abc_MinInt(r[0]-a[0], r[1]-a[1]); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sfm_TimEdgeArrival( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut )
{
Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin));
int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin));
if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present
{
pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[0] + tDelayBlockRise );
pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[1] + tDelayBlockFall );
}
if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present
{
pTimeOut[0] = Abc_MaxInt( pTimeOut[0], pTimeIn[1] + tDelayBlockRise );
pTimeOut[1] = Abc_MaxInt( pTimeOut[1], pTimeIn[0] + tDelayBlockFall );
}
}
static inline void Sfm_TimGateArrival( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut )
{
Mio_Pin_t * pPin; int i = 0;
pTimeOut[0] = pTimeOut[1] = 0;
Mio_GateForEachPin( pGate, pPin )
Sfm_TimEdgeArrival( p, pPin, pTimesIn[i++], pTimeOut );
assert( i == Mio_GateReadPinNum(pGate) );
}
static inline void Sfm_TimNodeArrival( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
int i, iFanin, * pTimesIn[6];
int * pTimeOut = Sfm_TimArr(p, pNode);
assert( Abc_ObjFaninNum(pNode) <= 6 );
Abc_ObjForEachFaninId( pNode, iFanin, i )
pTimesIn[i] = Sfm_TimArrId( p, iFanin );
Sfm_TimGateArrival( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut );
}
static inline void Sfm_TimEdgeRequired( Sfm_Tim_t * p, Mio_Pin_t * pPin, int * pTimeIn, int * pTimeOut )
{
Mio_PinPhase_t PinPhase = Mio_PinReadPhase(pPin);
int tDelayBlockRise = Scl_Flt2Int(Mio_PinReadDelayBlockRise(pPin));
int tDelayBlockFall = Scl_Flt2Int(Mio_PinReadDelayBlockFall(pPin));
if ( PinPhase != MIO_PHASE_INV ) // NONINV phase is present
{
pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[0] - tDelayBlockRise );
pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[1] - tDelayBlockFall );
}
if ( PinPhase != MIO_PHASE_NONINV ) // INV phase is present
{
pTimeIn[0] = Abc_MinInt( pTimeIn[0], pTimeOut[1] - tDelayBlockRise );
pTimeIn[1] = Abc_MinInt( pTimeIn[1], pTimeOut[0] - tDelayBlockFall );
}
}
static inline void Sfm_TimGateRequired( Sfm_Tim_t * p, Mio_Gate_t * pGate, int ** pTimesIn, int * pTimeOut )
{
Mio_Pin_t * pPin; int i = 0;
Mio_GateForEachPin( pGate, pPin )
Sfm_TimEdgeRequired( p, pPin, pTimesIn[i++], pTimeOut );
assert( i == Mio_GateReadPinNum(pGate) );
}
void Sfm_TimNodeRequired( Sfm_Tim_t * p, Abc_Obj_t * pNode )
{
int i, iFanin, * pTimesIn[6];
int * pTimeOut = Sfm_TimReq(p, pNode);
assert( Abc_ObjFaninNum(pNode) <= 6 );
Abc_ObjForEachFaninId( pNode, iFanin, i )
pTimesIn[i] = Sfm_TimReqId( p, iFanin );
Sfm_TimGateRequired( p, (Mio_Gate_t *)pNode->pData, pTimesIn, pTimeOut );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimCriticalPath_int( Sfm_Tim_t * p, Abc_Obj_t * pObj, Vec_Int_t * vPath, int SlackMax )
{
Abc_Obj_t * pNext; int i;
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return;
Abc_NodeSetTravIdCurrent( pObj );
assert( Abc_ObjIsNode(pObj) );
Abc_ObjForEachFanin( pObj, pNext, i )
{
if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
continue;
assert( Abc_ObjIsNode(pNext) );
if ( Sfm_TimSlack(p, pNext) <= SlackMax )
Sfm_TimCriticalPath_int( p, pNext, vPath, SlackMax );
}
if ( Abc_ObjFaninNum(pObj) > 0 )
Vec_IntPush( vPath, Abc_ObjId(pObj) );
}
int Sfm_TimCriticalPath( Sfm_Tim_t * p, int Window )
{
int i, SlackMax = p->Delay * Window / 100;
Abc_Obj_t * pObj, * pNext;
Vec_IntClear( &p->vPath );
Abc_NtkIncrementTravId( p->pNtk );
Abc_NtkForEachCo( p->pNtk, pObj, i )
{
pNext = Abc_ObjFanin0(pObj);
if ( Abc_ObjIsCi(pNext) || Abc_ObjFaninNum(pNext) == 0 )
continue;
assert( Abc_ObjIsNode(pNext) );
if ( Sfm_TimSlack(p, pNext) <= SlackMax )
Sfm_TimCriticalPath_int( p, pNext, &p->vPath, SlackMax );
}
return Vec_IntSize(&p->vPath);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimTrace( Sfm_Tim_t * p )
{
Abc_Obj_t * pObj; int i, Delay = 0;
Vec_Ptr_t * vNodes = Abc_NtkDfs( p->pNtk, 1 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
Sfm_TimNodeArrival( p, pObj );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Delay = Abc_MaxInt( Delay, Sfm_TimArrMax(p, Abc_ObjFanin0(pObj)) );
Vec_IntFill( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), ABC_INFINITY );
Abc_NtkForEachCo( p->pNtk, pObj, i )
Sfm_TimSetReq( p, Abc_ObjFanin0(pObj), Delay );
Vec_PtrForEachEntryReverse( Abc_Obj_t *, vNodes, pObj, i )
Sfm_TimNodeRequired( p, pObj );
Vec_PtrFree( vNodes );
return Delay;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Sfm_Tim_t * Sfm_TimStart( Mio_Library_t * pLib, Scl_Con_t * pExt, Abc_Ntk_t * pNtk, int DeltaCrit )
{
Sfm_Tim_t * p = ABC_CALLOC( Sfm_Tim_t, 1 );
p->pLib = pLib;
p->pExt = pExt;
p->pNtk = pNtk;
Vec_IntFill( &p->vTimArrs, 3*Abc_NtkObjNumMax(pNtk), 0 );
Vec_IntFill( &p->vTimReqs, 3*Abc_NtkObjNumMax(pNtk), 0 );
p->Delay = Sfm_TimTrace( p );
assert( DeltaCrit > 0 && DeltaCrit < Scl_Flt2Int(1000.0) );
p->DeltaCrit = DeltaCrit;
return p;
}
void Sfm_TimStop( Sfm_Tim_t * p )
{
Vec_IntErase( &p->vTimArrs );
Vec_IntErase( &p->vTimReqs );
Vec_WecErase( &p->vLevels );
Vec_IntErase( &p->vPath );
Vec_WrdErase( &p->vSortData );
ABC_FREE( p );
}
int Sfm_TimReadNtkDelay( Sfm_Tim_t * p )
{
return p->Delay;
}
int Sfm_TimReadObjDelay( Sfm_Tim_t * p, int iObj )
{
return Sfm_TimArrMaxId(p, iObj);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimTest( Abc_Ntk_t * pNtk )
{
Mio_Library_t * pLib = (Mio_Library_t *)pNtk->pManFunc;
Sfm_Tim_t * p = Sfm_TimStart( pLib, NULL, pNtk, 100 );
printf( "Max delay = %.2f. Path = %d (%d).\n", Scl_Int2Flt(p->Delay), Sfm_TimCriticalPath(p, 1), Abc_NtkNodeNum(p->pNtk) );
Sfm_TimStop( p );
}
/**Function*************************************************************
Synopsis [Levelized structure.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Sfm_TimUpdateClean( Sfm_Tim_t * p )
{
Vec_Int_t * vLevel;
Abc_Obj_t * pObj;
int i, k;
Vec_WecForEachLevel( &p->vLevels, vLevel, i )
{
Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k )
{
assert( pObj->fMarkC == 1 );
pObj->fMarkC = 0;
}
Vec_IntClear( vLevel );
}
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Sfm_TimUpdateTiming( Sfm_Tim_t * p, Vec_Int_t * vTimeNodes )
{
assert( Vec_IntSize(vTimeNodes) > 0 && Vec_IntSize(vTimeNodes) <= 2 );
Vec_IntFillExtra( &p->vTimArrs, 2*Abc_NtkObjNumMax(p->pNtk), 0 );
Vec_IntFillExtra( &p->vTimReqs, 2*Abc_NtkObjNumMax(p->pNtk), 0 );
p->Delay = Sfm_TimTrace( p );
}
/**Function*************************************************************
Synopsis [Sort an array of nodes using their max arrival times.]
Description [Returns the number of new divisor nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimSortArrayByArrival( Sfm_Tim_t * p, Vec_Int_t * vNodes, int iPivot )
{
word Entry;
int i, Id, Time, nDivNew = -1;
int MaxDelay = ABC_INFINITY/2+Sfm_TimArrMaxId(p, iPivot);
assert( p->DeltaCrit > 0 );
// collect nodes
Vec_WrdClear( &p->vSortData );
Vec_IntForEachEntry( vNodes, Id, i )
{
Time = Sfm_TimArrMaxId( p, Id );
assert( -ABC_INFINITY/2 < Time && Time < ABC_INFINITY/2 );
Vec_WrdPush( &p->vSortData, ((word)Id << 32) | (ABC_INFINITY/2+Time) );
}
// sort nodes by delay
Abc_QuickSort3( Vec_WrdArray(&p->vSortData), Vec_WrdSize(&p->vSortData), 0 );
// collect sorted nodes and find place where divisors end
Vec_IntClear( vNodes );
Vec_WrdForEachEntry( &p->vSortData, Entry, i )
{
Vec_IntPush( vNodes, (int)(Entry >> 32) );
if ( nDivNew == -1 && ((int)Entry) + p->DeltaCrit > MaxDelay )
nDivNew = i;
}
return nDivNew;
}
/**Function*************************************************************
Synopsis [Priority of nodes to try remapping for delay.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimPriorityNodes( Sfm_Tim_t * p, Vec_Int_t * vCands, int Window )
{
Vec_Int_t * vLevel;
Abc_Obj_t * pObj;
int i, k;
assert( Window >= 0 && Window <= 100 );
// collect critical path
Sfm_TimCriticalPath( p, Window );
// add nodes to the levelized structure
Sfm_TimUpdateClean( p );
Abc_NtkForEachObjVec( &p->vPath, p->pNtk, pObj, i )
{
assert( pObj->fMarkC == 0 );
pObj->fMarkC = 1;
Vec_WecPush( &p->vLevels, Abc_ObjLevel(pObj), Abc_ObjId(pObj) );
}
// prioritize nodes by expected gain
Vec_WecSort( &p->vLevels, 0 );
Vec_IntClear( vCands );
Vec_WecForEachLevel( &p->vLevels, vLevel, i )
Abc_NtkForEachObjVec( vLevel, p->pNtk, pObj, k )
if ( !pObj->fMarkA )
Vec_IntPush( vCands, Abc_ObjId(pObj) );
// printf( "Path = %5d Cand = %5d\n", Vec_IntSize(&p->vPath) );
return Vec_IntSize(vCands) > 0;
}
/**Function*************************************************************
Synopsis [Returns 1 if node is relatively non-critical compared to the pivot.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimNodeIsNonCritical( Sfm_Tim_t * p, Abc_Obj_t * pPivot, Abc_Obj_t * pNode )
{
return Sfm_TimArrMax(p, pNode) + p->DeltaCrit <= Sfm_TimArrMax(p, pPivot);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Sfm_TimEvalRemapping( Sfm_Tim_t * p, Vec_Int_t * vFanins, Vec_Int_t * vMap, Mio_Gate_t * pGate1, char * pFans1, Mio_Gate_t * pGate2, char * pFans2 )
{
int TimeOut[2][2];
int * pTimesIn1[6], * pTimesIn2[6];
int i, nFanins1, nFanins2;
// process the first gate
nFanins1 = Mio_GateReadPinNum( pGate1 );
for ( i = 0; i < nFanins1; i++ )
pTimesIn1[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans1[i])) );
Sfm_TimGateArrival( p, pGate1, pTimesIn1, TimeOut[0] );
if ( pGate2 == NULL )
return Abc_MaxInt(TimeOut[0][0], TimeOut[0][1]);
// process the second gate
nFanins2 = Mio_GateReadPinNum( pGate2 );
for ( i = 0; i < nFanins2; i++ )
if ( (int)pFans2[i] == 16 )
pTimesIn2[i] = TimeOut[0];
else
pTimesIn2[i] = Sfm_TimArrId( p, Vec_IntEntry(vMap, Vec_IntEntry(vFanins, (int)pFans2[i])) );
Sfm_TimGateArrival( p, pGate2, pTimesIn2, TimeOut[1] );
return Abc_MaxInt(TimeOut[1][0], TimeOut[1][1]);
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END