| #include <cstdio> | |
| #include <cmath> | |
| #include <memory> | |
| #include <fstream> | |
| using namespace std; | |
| #include "vtr_assert.h" | |
| #include "vtr_log.h" | |
| #include "vtr_util.h" | |
| #include "vtr_random.h" | |
| #include "vtr_matrix.h" | |
| #include "vpr_types.h" | |
| #include "vpr_error.h" | |
| #include "vpr_utils.h" | |
| #include "globals.h" | |
| #include "place.h" | |
| #include "read_place.h" | |
| #include "draw.h" | |
| #include "place_and_route.h" | |
| #include "net_delay.h" | |
| #include "path_delay.h" | |
| #include "timing_place_lookup.h" | |
| #include "timing_place.h" | |
| #include "read_xml_arch_file.h" | |
| #include "echo_files.h" | |
| #include "vpr_utils.h" | |
| #include "place_macro.h" | |
| #include "histogram.h" | |
| #include "place_util.h" | |
| #include "PlacementDelayCalculator.h" | |
| #include "timing_util.h" | |
| #include "timing_info.h" | |
| #include "tatum/echo_writer.hpp" | |
| /************** Types and defines local to place.c ***************************/ | |
| /* Cut off for incremental bounding box updates. * | |
| * 4 is fastest -- I checked. */ | |
| /* To turn off incremental bounding box updates, set this to a huge value */ | |
| #define SMALL_NET 4 | |
| /* This defines the error tolerance for floating points variables used in * | |
| * cost computation. 0.01 means that there is a 1% error tolerance. */ | |
| #define ERROR_TOL .01 | |
| /* This defines the maximum number of swap attempts before invoking the * | |
| * once-in-a-while placement legality check as well as floating point * | |
| * variables round-offs check. */ | |
| #define MAX_MOVES_BEFORE_RECOMPUTE 50000 | |
| /* The maximum number of tries when trying to place a carry chain at a * | |
| * random location before trying exhaustive placement - find the fist * | |
| * legal position and place it during initial placement. */ | |
| #define MAX_NUM_TRIES_TO_PLACE_MACROS_RANDOMLY 4 | |
| /* Flags for the states of the bounding box. * | |
| * Stored as char for memory efficiency. */ | |
| #define NOT_UPDATED_YET 'N' | |
| #define UPDATED_ONCE 'U' | |
| #define GOT_FROM_SCRATCH 'S' | |
| /* For comp_cost. NORMAL means use the method that generates updateable * | |
| * bounding boxes for speed. CHECK means compute all bounding boxes from * | |
| * scratch using a very simple routine to allow checks of the other * | |
| * costs. */ | |
| enum e_cost_methods { | |
| NORMAL, CHECK | |
| }; | |
| /* This is for the placement swap routines. A swap attempt could be * | |
| * rejected, accepted or aborted (due to the limitations placed on the * | |
| * carry chain support at this point). */ | |
| enum e_swap_result { | |
| REJECTED, ACCEPTED, ABORTED | |
| }; | |
| struct t_placer_statistics { | |
| double av_cost, av_bb_cost, av_timing_cost, | |
| sum_of_squares, av_delay_cost; | |
| int success_sum; | |
| }; | |
| #define MAX_INV_TIMING_COST 1.e9 | |
| /* Stops inverse timing cost from going to infinity with very lax timing constraints, | |
| which avoids multiplying by a gigantic inverse_prev_timing_cost when auto-normalizing. | |
| The exact value of this cost has relatively little impact, but should not be | |
| large enough to be on the order of timing costs for normal constraints. */ | |
| /********************** Variables local to place.c ***************************/ | |
| /* Cost of a net, and a temporary cost of a net used during move assessment. */ | |
| static vtr::vector<ClusterNetId, float> net_cost, temp_net_cost; | |
| static t_legal_pos **legal_pos = nullptr; /* [0..device_ctx.num_block_types-1][0..type_tsize - 1] */ | |
| static int *num_legal_pos = nullptr; /* [0..num_legal_pos-1] */ | |
| /* [0...cluster_ctx.clb_nlist.nets().size()-1] * | |
| * A flag array to indicate whether the specific bounding box has been updated * | |
| * in this particular swap or not. If it has been updated before, the code * | |
| * must use the updated data, instead of the out-of-date data passed into the * | |
| * subroutine, particularly used in try_swap(). The value NOT_UPDATED_YET * | |
| * indicates that the net has not been updated before, UPDATED_ONCE indicated * | |
| * that the net has been updated once, if it is going to be updated again, the * | |
| * values from the previous update must be used. GOT_FROM_SCRATCH is only * | |
| * applicable for nets larger than SMALL_NETS and it indicates that the * | |
| * particular bounding box cannot be updated incrementally before, hence the * | |
| * bounding box is got from scratch, so the bounding box would definitely be * | |
| * right, DO NOT update again. */ | |
| static vtr::vector<ClusterNetId, char> bb_updated_before; | |
| /* [0..cluster_ctx.clb_nlist.nets().size()-1][1..num_pins-1]. What is the value of the timing */ | |
| /* driven portion of the cost function. These arrays will be set to */ | |
| /* (criticality * delay) for each point to point connection. */ | |
| static vtr::vector<ClusterNetId, float *> point_to_point_timing_cost; | |
| static vtr::vector<ClusterNetId, float *> temp_point_to_point_timing_cost; | |
| /* [0..cluster_ctx.clb_nlist.nets().size()-1][1..num_pins-1]. What is the value of the delay */ | |
| /* for each connection in the circuit */ | |
| static vtr::vector_map<ClusterNetId, float *> point_to_point_delay_cost; | |
| static vtr::vector_map<ClusterNetId, float *> temp_point_to_point_delay_cost; | |
| /* [0..cluster_ctx.clb_nlist.blocks().size()-1][0..pins_per_clb-1]. Indicates which pin on the net */ | |
| /* this block corresponds to, this is only required during timing-driven */ | |
| /* placement. It is used to allow us to update individual connections on */ | |
| /* each net */ | |
| static vtr::vector<ClusterBlockId,std::vector<int>> net_pin_indices; | |
| /* [0..cluster_ctx.clb_nlist.nets().size()-1]. Store the bounding box coordinates and the number of * | |
| * blocks on each of a net's bounding box (to allow efficient updates), * | |
| * respectively. */ | |
| static vtr::vector<ClusterNetId, t_bb> bb_coords, bb_num_on_edges; | |
| /* Store the information on the blocks to be moved in a swap during * | |
| * placement, in the form of array of structs instead of struct with * | |
| * arrays for cache effifiency * | |
| */ | |
| static t_pl_blocks_to_be_moved blocks_affected; | |
| /* The arrays below are used to precompute the inverse of the average * | |
| * number of tracks per channel between [subhigh] and [sublow]. Access * | |
| * them as chan?_place_cost_fac[subhigh][sublow]. They are used to * | |
| * speed up the computation of the cost function that takes the length * | |
| * of the net bounding box in each dimension, divided by the average * | |
| * number of tracks in that direction; for other cost functions they * | |
| * will never be used. * | |
| */ | |
| static float** chanx_place_cost_fac; //[0...device_ctx.grid.width()-2] | |
| static float** chany_place_cost_fac; //[0...device_ctx.grid.height()-2] | |
| /* The following arrays are used by the try_swap function for speed. */ | |
| /* [0...cluster_ctx.clb_nlist.nets().size()-1] */ | |
| static vtr::vector<ClusterNetId, t_bb> ts_bb_coord_new, ts_bb_edge_new; | |
| static std::vector<ClusterNetId> ts_nets_to_update; | |
| /* The pl_macros array stores all the carry chains placement macros. * | |
| * [0...num_pl_macros-1] */ | |
| static t_pl_macro * pl_macros = nullptr; | |
| static int num_pl_macros; | |
| /* These file-scoped variables keep track of the number of swaps * | |
| * rejected, accepted or aborted. The total number of swap attempts * | |
| * is the sum of the three number. */ | |
| static int num_swap_rejected = 0; | |
| static int num_swap_accepted = 0; | |
| static int num_swap_aborted = 0; | |
| static int num_ts_called = 0; | |
| /* Expected crossing counts for nets with different #'s of pins. From * | |
| * ICCAD 94 pp. 690 - 695 (with linear interpolation applied by me). * | |
| * Multiplied to bounding box of a net to better estimate wire length * | |
| * for higher fanout nets. Each entry is the correction factor for the * | |
| * fanout index-1 */ | |
| static const float cross_count[50] = { /* [0..49] */1.0, 1.0, 1.0, 1.0828, 1.1536, 1.2206, 1.2823, 1.3385, 1.3991, 1.4493, 1.4974, | |
| 1.5455, 1.5937, 1.6418, 1.6899, 1.7304, 1.7709, 1.8114, 1.8519, 1.8924, | |
| 1.9288, 1.9652, 2.0015, 2.0379, 2.0743, 2.1061, 2.1379, 2.1698, 2.2016, | |
| 2.2334, 2.2646, 2.2958, 2.3271, 2.3583, 2.3895, 2.4187, 2.4479, 2.4772, | |
| 2.5064, 2.5356, 2.5610, 2.5864, 2.6117, 2.6371, 2.6625, 2.6887, 2.7148, | |
| 2.7410, 2.7671, 2.7933 }; | |
| /********************* Static subroutines local to place.c *******************/ | |
| #ifdef VERBOSE | |
| static void print_clb_placement(const char *fname); | |
| #endif | |
| static void alloc_and_load_placement_structs( | |
| float place_cost_exp, t_placer_opts placer_opts, | |
| t_direct_inf *directs, int num_directs); | |
| static void alloc_and_load_net_pin_indices(); | |
| static void alloc_and_load_try_swap_structs(); | |
| static void free_placement_structs(t_placer_opts placer_opts); | |
| static void alloc_and_load_for_fast_cost_update(float place_cost_exp); | |
| static void free_fast_cost_update(); | |
| static void alloc_legal_placements(); | |
| static void load_legal_placements(); | |
| static void free_legal_placements(); | |
| static int check_macro_can_be_placed(int imacro, int itype, int x, int y, int z); | |
| static int try_place_macro(int itype, int ipos, int imacro); | |
| static void initial_placement_pl_macros(int macros_max_num_tries, int * free_locations); | |
| static void initial_placement_blocks(int * free_locations, enum e_pad_loc_type pad_loc_type); | |
| static void initial_placement_location(int * free_locations, ClusterBlockId blk_id, | |
| int *pipos, int *px, int *py, int *pz); | |
| static void initial_placement(enum e_pad_loc_type pad_loc_type, | |
| const char *pad_loc_file); | |
| static float comp_bb_cost(e_cost_methods method); | |
| static int setup_blocks_affected(ClusterBlockId b_from, int x_to, int y_to, int z_to); | |
| static int find_affected_blocks(ClusterBlockId b_from, int x_to, int y_to, int z_to); | |
| static e_swap_result try_swap(float t, float *cost, float *bb_cost, float *timing_cost, | |
| float rlim, | |
| enum e_place_algorithm place_algorithm, float timing_tradeoff, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, | |
| float *delay_cost); | |
| static void check_place(float bb_cost, float timing_cost, | |
| enum e_place_algorithm place_algorithm, | |
| float delay_cost); | |
| static float starting_t(float *cost_ptr, float *bb_cost_ptr, | |
| float *timing_cost_ptr, | |
| t_annealing_sched annealing_sched, int max_moves, float rlim, | |
| enum e_place_algorithm place_algorithm, float timing_tradeoff, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, | |
| float *delay_cost_ptr); | |
| static void update_t(float *t, float rlim, float success_rat, | |
| t_annealing_sched annealing_sched); | |
| static void update_rlim(float *rlim, float success_rat, const DeviceGrid& grid); | |
| static int exit_crit(float t, float cost, | |
| t_annealing_sched annealing_sched); | |
| static int count_connections(); | |
| static double get_std_dev(int n, double sum_x_squared, double av_x); | |
| static float recompute_bb_cost(); | |
| static float comp_td_point_to_point_delay(ClusterNetId net_id, int ipin); | |
| static void comp_td_point_to_point_delays(); | |
| static void update_td_cost(); | |
| static bool driven_by_moved_block(const ClusterNetId net); | |
| static void comp_td_costs(float *timing_cost, float *connection_delay_sum); | |
| static e_swap_result assess_swap(float delta_c, float t); | |
| static bool find_to(t_type_ptr type, float rlim, | |
| int x_from, int y_from, | |
| int *px_to, int *py_to, int *pz_to); | |
| static void find_to_location(t_type_ptr type, float rlim, | |
| int x_from, int y_from, | |
| int *px_to, int *py_to, int *pz_to); | |
| static void get_non_updateable_bb(ClusterNetId net_id, t_bb *bb_coord_new); | |
| static void update_bb(ClusterNetId net_id, t_bb *bb_coord_new, | |
| t_bb *bb_edge_new, int xold, int yold, int xnew, int ynew); | |
| static int find_affected_nets_and_update_costs(e_place_algorithm place_algorithm, float& bb_delta_c, float& timing_delta_c, float& delay_delta_c); | |
| static void record_affected_net(const ClusterNetId net, int& num_affected_nets); | |
| static void update_net_bb(const ClusterNetId net, int iblk, const ClusterBlockId blk, const ClusterPinId blk_pin); | |
| static void update_td_delta_costs(const ClusterNetId net, const ClusterPinId pin, float& delta_timing_cost, float& delta_delay_cost); | |
| static float get_net_cost(ClusterNetId net_id, t_bb *bb_ptr); | |
| static void get_bb_from_scratch(ClusterNetId net_id, t_bb *coords, | |
| t_bb *num_on_edges); | |
| static double get_net_wirelength_estimate(ClusterNetId net_id, t_bb *bbptr); | |
| static void free_try_swap_arrays(); | |
| static void outer_loop_recompute_criticalities(t_placer_opts placer_opts, | |
| int num_connections, float crit_exponent, float bb_cost, | |
| float * place_delay_value, float * timing_cost, float * delay_cost, | |
| int * outer_crit_iter_count, float * inverse_prev_timing_cost, | |
| float * inverse_prev_bb_cost, | |
| const ClusteredPinAtomPinsLookup& netlist_pin_lookup, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_slack* slacks, | |
| t_timing_inf timing_inf, | |
| #endif | |
| SetupTimingInfo& timing_info); | |
| static void placement_inner_loop(float t, float rlim, t_placer_opts placer_opts, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, int move_lim, | |
| float crit_exponent, int inner_recompute_limit, | |
| t_placer_statistics *stats, float * cost, float * bb_cost, float * timing_cost, | |
| float * delay_cost, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_slack* slacks, | |
| t_timing_inf timing_inf, | |
| #endif | |
| const ClusteredPinAtomPinsLookup& netlist_pin_lookup, | |
| SetupTimingInfo& timing_info); | |
| /*****************************************************************************/ | |
| void try_place(t_placer_opts placer_opts, | |
| t_annealing_sched annealing_sched, | |
| t_chan_width_dist chan_width_dist, t_router_opts router_opts, | |
| t_det_routing_arch *det_routing_arch, t_segment_inf * segment_inf, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_timing_inf timing_inf, | |
| #endif | |
| t_direct_inf *directs, int num_directs) { | |
| /* Does almost all the work of placing a circuit. Width_fac gives the * | |
| * width of the widest channel. Place_cost_exp says what exponent the * | |
| * width should be taken to when calculating costs. This allows a * | |
| * greater bias for anisotropic architectures. */ | |
| int tot_iter, move_lim, moves_since_cost_recompute, width_fac, num_connections, | |
| outer_crit_iter_count, inner_recompute_limit; | |
| unsigned int ipin; | |
| float t, success_rat, rlim, cost, timing_cost, bb_cost, new_bb_cost, new_timing_cost, | |
| delay_cost, new_delay_cost, place_delay_value, inverse_prev_bb_cost, inverse_prev_timing_cost, | |
| oldt, crit_exponent, | |
| first_rlim, final_rlim, inverse_delta_rlim; | |
| tatum::TimingPathInfo critical_path; | |
| float sTNS = NAN; | |
| float sWNS = NAN; | |
| double std_dev; | |
| char msg[vtr::bufsize]; | |
| t_placer_statistics stats; | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_slack * slacks = NULL; | |
| #endif | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| std::shared_ptr<SetupTimingInfo> timing_info; | |
| std::shared_ptr<PlacementDelayCalculator> placement_delay_calc; | |
| /* Allocated here because it goes into timing critical code where each memory allocation is expensive */ | |
| IntraLbPbPinLookup pb_gpin_lookup(device_ctx.block_types, device_ctx.num_block_types); | |
| /* init file scope variables */ | |
| num_swap_rejected = 0; | |
| num_swap_accepted = 0; | |
| num_swap_aborted = 0; | |
| num_ts_called = 0; | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE | |
| || placer_opts.enable_timing_computations) { | |
| /*do this before the initial placement to avoid messing up the initial placement */ | |
| alloc_lookups_and_criticalities(chan_width_dist, router_opts, det_routing_arch, segment_inf, directs, num_directs); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| slacks = alloc_and_load_timing_graph(timing_inf); | |
| #endif | |
| } | |
| width_fac = placer_opts.place_chan_width; | |
| init_chan(width_fac, chan_width_dist); | |
| alloc_and_load_placement_structs(placer_opts.place_cost_exp, placer_opts, | |
| directs, num_directs); | |
| initial_placement(placer_opts.pad_loc_type, placer_opts.pad_loc_file.c_str()); | |
| init_draw_coords((float) width_fac); | |
| //Enables fast look-up of atom pins connect to CLB pins | |
| ClusteredPinAtomPinsLookup netlist_pin_lookup(cluster_ctx.clb_nlist, pb_gpin_lookup); | |
| /* Gets initial cost and loads bounding boxes. */ | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE || placer_opts.enable_timing_computations) { | |
| bb_cost = comp_bb_cost(NORMAL); | |
| crit_exponent = placer_opts.td_place_exp_first; /*this will be modified when rlim starts to change */ | |
| num_connections = count_connections(); | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("There are %d point to point connections in this circuit.\n", num_connections); | |
| vtr::printf_info("\n"); | |
| place_delay_value = 0; | |
| //Update the point-to-point delays from the initial placement | |
| comp_td_point_to_point_delays(); | |
| /* | |
| * Initialize timing analysis | |
| */ | |
| auto& atom_ctx = g_vpr_ctx.atom(); | |
| placement_delay_calc = std::make_shared<PlacementDelayCalculator>(atom_ctx.nlist, atom_ctx.lookup, point_to_point_delay_cost); | |
| timing_info = make_setup_timing_info(placement_delay_calc); | |
| timing_info->update(); | |
| timing_info->set_warn_unconstrained(false); //Don't warn again about unconstrained nodes again during placement | |
| //Initial slack estimates | |
| load_criticalities(*timing_info, crit_exponent, netlist_pin_lookup); | |
| critical_path = timing_info->least_slack_critical_path(); | |
| //Write out the initial timing echo file | |
| if(isEchoFileEnabled(E_ECHO_INITIAL_PLACEMENT_TIMING_GRAPH)) { | |
| auto& timing_ctx = g_vpr_ctx.timing(); | |
| tatum::write_echo(getEchoFileName(E_ECHO_INITIAL_PLACEMENT_TIMING_GRAPH), | |
| *timing_ctx.graph, *timing_ctx.constraints, *placement_delay_calc, timing_info->analyzer()); | |
| } | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| load_timing_graph_net_delays(point_to_point_delay_cost); | |
| do_timing_analysis(slacks, timing_inf, false, true); | |
| float cpd_diff_ns = std::abs(get_critical_path_delay() - 1e9*critical_path.delay()); | |
| if(cpd_diff_ns > ERROR_TOL) { | |
| print_classic_cpds(); | |
| print_tatum_cpds(timing_info->critical_paths()); | |
| vpr_throw(VPR_ERROR_TIMING, __FILE__, __LINE__, "Classic VPR and Tatum critical paths do not match (%g and %g respectively)", get_critical_path_delay(), 1e9*critical_path.delay()); | |
| } | |
| #endif | |
| /*now we can properly compute costs */ | |
| comp_td_costs(&timing_cost, &delay_cost); /*also updates values in point_to_point_delay_cost */ | |
| if (getEchoEnabled()) { | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| if(isEchoFileEnabled(E_ECHO_INITIAL_PLACEMENT_SLACK)) | |
| print_slack(slacks->slack, false, getEchoFileName(E_ECHO_INITIAL_PLACEMENT_SLACK)); | |
| if(isEchoFileEnabled(E_ECHO_INITIAL_PLACEMENT_CRITICALITY)) | |
| print_criticality(slacks, getEchoFileName(E_ECHO_INITIAL_PLACEMENT_CRITICALITY)); | |
| #endif | |
| } | |
| outer_crit_iter_count = 1; | |
| inverse_prev_timing_cost = 1 / timing_cost; | |
| inverse_prev_bb_cost = 1 / bb_cost; | |
| cost = 1; /*our new cost function uses normalized values of */ | |
| /*bb_cost and timing_cost, the value of cost will be reset */ | |
| /*to 1 at each temperature when *_TIMING_DRIVEN_PLACE is true */ | |
| } else { /*BOUNDING_BOX_PLACE */ | |
| cost = bb_cost = comp_bb_cost(NORMAL); | |
| timing_cost = 0; | |
| delay_cost = 0; | |
| place_delay_value = 0; | |
| outer_crit_iter_count = 0; | |
| num_connections = 0; | |
| crit_exponent = 0; | |
| inverse_prev_timing_cost = 0; /*inverses not used */ | |
| inverse_prev_bb_cost = 0; | |
| } | |
| //Sanity check that initial placement is legal | |
| check_place(bb_cost, timing_cost, placer_opts.place_algorithm, delay_cost); | |
| //Initial pacement statistics | |
| vtr::printf_info("Initial placement cost: %g bb_cost: %g td_cost: %g delay_cost: %g\n", | |
| cost, bb_cost, timing_cost, delay_cost); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| vtr::printf_info("Initial placement estimated Critical Path Delay (CPD): %g ns\n", | |
| 1e9*critical_path.delay()); | |
| vtr::printf_info("Initial placement estimated setup Total Negative Slack (sTNS): %g ns\n", | |
| 1e9*timing_info->setup_total_negative_slack()); | |
| vtr::printf_info("Initial placement estimated setup Worst Negative Slack (sWNS): %g ns\n", | |
| 1e9*timing_info->setup_worst_negative_slack()); | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("Initial placement estimated setup slack histogram:\n"); | |
| print_histogram(create_setup_slack_histogram(*timing_info->setup_analyzer())); | |
| } | |
| vtr::printf_info("\n"); | |
| //Table header | |
| vtr::printf_info("%7s " | |
| "%7s %10s %10s %10s " | |
| "%10s %7s %10s %8s " | |
| "%7s %7s %7s %6s " | |
| "%9s %6s\n", | |
| "-------", | |
| "-------", "----------", "----------", "----------", | |
| "----------", "-------", "----------", "--------", | |
| "-------", "-------", "-------", "------", | |
| "---------", "------"); | |
| vtr::printf_info("%7s " | |
| "%7s %10s %10s %10s " | |
| "%10s %7s %10s %8s " | |
| "%7s %7s %7s %6s " | |
| "%9s %6s\n", | |
| "T", | |
| "Cost", "Av BB Cost", "Av TD Cost", "Av Tot Del", | |
| "P to P Del", "CPD", "sTNS", "sWNS", | |
| "Ac Rate", "Std Dev", "R limit", "Exp", | |
| "Tot Moves", "Alpha"); | |
| vtr::printf_info("%7s " | |
| "%7s %10s %10s %10s " | |
| "%10s %7s %10s %8s " | |
| "%7s %7s %7s %6s " | |
| "%9s %6s\n", | |
| "-------", | |
| "-------", "----------", "----------", "----------", | |
| "----------", "-------", "----------", "--------", | |
| "-------", "-------", "-------", "------", | |
| "---------", "------"); | |
| sprintf(msg, "Initial Placement. Cost: %g BB Cost: %g TD Cost %g Delay Cost: %g \t Channel Factor: %d", | |
| cost, bb_cost, timing_cost, delay_cost, width_fac); | |
| //Draw the initial placement | |
| update_screen(ScreenUpdatePriority::MAJOR, msg, PLACEMENT, timing_info); | |
| move_lim = (int) (annealing_sched.inner_num * pow(cluster_ctx.clb_nlist.blocks().size(), 1.3333)); | |
| /* Sometimes I want to run the router with a random placement. Avoid * | |
| * using 0 moves to stop division by 0 and 0 length vector problems, * | |
| * by setting move_lim to 1 (which is still too small to do any * | |
| * significant optimization). */ | |
| if (move_lim <= 0) | |
| move_lim = 1; | |
| if (placer_opts.inner_loop_recompute_divider != 0) { | |
| inner_recompute_limit = (int) | |
| (0.5 + (float) move_lim / (float) placer_opts.inner_loop_recompute_divider); | |
| } else { | |
| /*don't do an inner recompute */ | |
| inner_recompute_limit = move_lim + 1; | |
| } | |
| rlim = (float) max(device_ctx.grid.width() - 1, device_ctx.grid.height() - 1); | |
| first_rlim = rlim; /*used in timing-driven placement for exponent computation */ | |
| final_rlim = 1; | |
| inverse_delta_rlim = 1 / (first_rlim - final_rlim); | |
| t = starting_t(&cost, &bb_cost, &timing_cost, | |
| annealing_sched, move_lim, rlim, | |
| placer_opts.place_algorithm, placer_opts.timing_tradeoff, | |
| inverse_prev_bb_cost, inverse_prev_timing_cost, &delay_cost); | |
| tot_iter = 0; | |
| moves_since_cost_recompute = 0; | |
| /* Outer loop of the simmulated annealing begins */ | |
| while (exit_crit(t, cost, annealing_sched) == 0) { | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| cost = 1; | |
| } | |
| outer_loop_recompute_criticalities(placer_opts, num_connections, | |
| crit_exponent, bb_cost, &place_delay_value, &timing_cost, &delay_cost, | |
| &outer_crit_iter_count, &inverse_prev_timing_cost, &inverse_prev_bb_cost, | |
| netlist_pin_lookup, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| slacks, | |
| timing_inf, | |
| #endif | |
| *timing_info); | |
| placement_inner_loop(t, rlim, placer_opts, inverse_prev_bb_cost, inverse_prev_timing_cost, | |
| move_lim, crit_exponent, inner_recompute_limit, &stats, | |
| &cost, &bb_cost, &timing_cost, &delay_cost, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| slacks, | |
| timing_inf, | |
| #endif | |
| netlist_pin_lookup, | |
| *timing_info); | |
| /* Lines below prevent too much round-off error from accumulating * | |
| * in the cost over many iterations. This round-off can lead to * | |
| * error checks failing because the cost is different from what * | |
| * you get when you recompute from scratch. */ | |
| moves_since_cost_recompute += move_lim; | |
| if (moves_since_cost_recompute > MAX_MOVES_BEFORE_RECOMPUTE) { | |
| new_bb_cost = recompute_bb_cost(); | |
| if (fabs(new_bb_cost - bb_cost) > bb_cost * ERROR_TOL) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "in try_place: new_bb_cost = %g, old bb_cost = %g\n", | |
| new_bb_cost, bb_cost); | |
| } | |
| bb_cost = new_bb_cost; | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| comp_td_costs(&new_timing_cost, &new_delay_cost); | |
| if (fabs(new_timing_cost - timing_cost) > timing_cost * ERROR_TOL) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "in try_place: new_timing_cost = %g, old timing_cost = %g, ERROR_TOL = %g\n", | |
| new_timing_cost, timing_cost, ERROR_TOL); | |
| } | |
| if (fabs(new_delay_cost - delay_cost) > delay_cost * ERROR_TOL) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "in try_place: new_delay_cost = %g, old delay_cost = %g, ERROR_TOL = %g\n", | |
| new_delay_cost, delay_cost, ERROR_TOL); | |
| } | |
| timing_cost = new_timing_cost; | |
| } | |
| if (placer_opts.place_algorithm == BOUNDING_BOX_PLACE) { | |
| cost = new_bb_cost; | |
| } | |
| moves_since_cost_recompute = 0; | |
| } | |
| tot_iter += move_lim; | |
| success_rat = ((float) stats.success_sum) / move_lim; | |
| if (stats.success_sum == 0) { | |
| stats.av_cost = cost; | |
| stats.av_bb_cost = bb_cost; | |
| stats.av_timing_cost = timing_cost; | |
| stats.av_delay_cost = delay_cost; | |
| } else { | |
| stats.av_cost /= stats.success_sum; | |
| stats.av_bb_cost /= stats.success_sum; | |
| stats.av_timing_cost /= stats.success_sum; | |
| stats.av_delay_cost /= stats.success_sum; | |
| } | |
| std_dev = get_std_dev(stats.success_sum, stats.sum_of_squares, stats.av_cost); | |
| oldt = t; /* for finding and printing alpha. */ | |
| update_t(&t, rlim, success_rat, annealing_sched); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| critical_path = timing_info->least_slack_critical_path(); | |
| sTNS = timing_info->setup_total_negative_slack(); | |
| sWNS = timing_info->setup_worst_negative_slack(); | |
| } | |
| vtr::printf_info("%7.3f " | |
| "%7.4f %10.4f %-10.5g %-10.5g " | |
| "%-10.5g %7.3f % 10.3g % 8.3f " | |
| "%7.4f %7.4f %7.4f %6.3f" | |
| "%9d %6.3f\n", | |
| oldt, | |
| stats.av_cost, stats.av_bb_cost, stats.av_timing_cost, stats.av_delay_cost, | |
| place_delay_value, 1e9*critical_path.delay(), 1e9*sTNS, 1e9*sWNS, | |
| success_rat, std_dev, rlim, crit_exponent, | |
| tot_iter, t / oldt); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| float cpd_diff_ns = std::abs(get_critical_path_delay() - 1e9*critical_path.delay()); | |
| if(cpd_diff_ns > ERROR_TOL) { | |
| print_classic_cpds(); | |
| print_tatum_cpds(timing_info->critical_paths()); | |
| vpr_throw(VPR_ERROR_TIMING, __FILE__, __LINE__, "Classic VPR and Tatum critical paths do not match (%g and %g respectively)", get_critical_path_delay(), 1e9*critical_path.delay()); | |
| } | |
| } | |
| #endif | |
| sprintf(msg, "Cost: %g BB Cost %g TD Cost %g Temperature: %g", | |
| cost, bb_cost, timing_cost, t); | |
| update_screen(ScreenUpdatePriority::MINOR, msg, PLACEMENT, timing_info); | |
| update_rlim(&rlim, success_rat, device_ctx.grid); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| crit_exponent = (1 - (rlim - final_rlim) * inverse_delta_rlim) | |
| * (placer_opts.td_place_exp_last - placer_opts.td_place_exp_first) | |
| + placer_opts.td_place_exp_first; | |
| } | |
| #ifdef VERBOSE | |
| if (getEchoEnabled()) { | |
| print_clb_placement("first_iteration_clb_placement.echo"); | |
| } | |
| #endif | |
| } | |
| /* Outer loop of the simmulated annealing ends */ | |
| outer_loop_recompute_criticalities(placer_opts, num_connections, | |
| crit_exponent, bb_cost, &place_delay_value, &timing_cost, &delay_cost, | |
| &outer_crit_iter_count, &inverse_prev_timing_cost, &inverse_prev_bb_cost, | |
| netlist_pin_lookup, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| slacks, | |
| timing_inf, | |
| #endif | |
| *timing_info); | |
| t = 0; /* freeze out */ | |
| /* Run inner loop again with temperature = 0 so as to accept only swaps | |
| * which reduce the cost of the placement */ | |
| placement_inner_loop(t, rlim, placer_opts, inverse_prev_bb_cost, inverse_prev_timing_cost, | |
| move_lim, crit_exponent, inner_recompute_limit, &stats, | |
| &cost, &bb_cost, &timing_cost, &delay_cost, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| slacks, | |
| timing_inf, | |
| #endif | |
| netlist_pin_lookup, | |
| *timing_info); | |
| tot_iter += move_lim; | |
| success_rat = ((float) stats.success_sum) / move_lim; | |
| if (stats.success_sum == 0) { | |
| stats.av_cost = cost; | |
| stats.av_bb_cost = bb_cost; | |
| stats.av_delay_cost = delay_cost; | |
| stats.av_timing_cost = timing_cost; | |
| } else { | |
| stats.av_cost /= stats.success_sum; | |
| stats.av_bb_cost /= stats.success_sum; | |
| stats.av_delay_cost /= stats.success_sum; | |
| stats.av_timing_cost /= stats.success_sum; | |
| } | |
| std_dev = get_std_dev(stats.success_sum, stats.sum_of_squares, stats.av_cost); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| critical_path = timing_info->least_slack_critical_path(); | |
| sTNS = timing_info->setup_total_negative_slack(); | |
| sWNS = timing_info->setup_worst_negative_slack(); | |
| } | |
| vtr::printf_info("%7.3f " | |
| "%7.4f %10.4f %-10.5g %-10.5g " | |
| "%-10.5g %7.3f % 10.3g % 8.3f " | |
| "%7.4f %7.4f %7.4f %6.3f" | |
| "%9d %6.3f\n", | |
| t, | |
| stats.av_cost, stats.av_bb_cost, stats.av_timing_cost, stats.av_delay_cost, | |
| place_delay_value, 1e9*critical_path.delay(), 1e9*sTNS, 1e9*sWNS, | |
| success_rat, std_dev, rlim, crit_exponent, | |
| tot_iter, 0.); | |
| // TODO: | |
| // 1. print a message about number of aborted moves. | |
| // 2. add some subroutine hierarchy! Too big! | |
| #ifdef VERBOSE | |
| if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_END_CLB_PLACEMENT)) { | |
| print_clb_placement(getEchoFileName(E_ECHO_END_CLB_PLACEMENT)); | |
| } | |
| #endif | |
| check_place(bb_cost, timing_cost, placer_opts.place_algorithm, delay_cost); | |
| //Some stats | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("Swaps called: %d\n", num_ts_called); | |
| if (placer_opts.enable_timing_computations | |
| && placer_opts.place_algorithm == BOUNDING_BOX_PLACE) { | |
| /*need this done since the timing data has not been kept up to date* | |
| *in bounding_box mode */ | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| for (ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net_id).size(); ipin++) | |
| set_timing_place_crit(net_id, ipin, 0); /*dummy crit values */ | |
| } | |
| comp_td_costs(&timing_cost, &delay_cost); /*computes point_to_point_delay_cost */ | |
| } | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE | |
| || placer_opts.enable_timing_computations) { | |
| //Final timing estimate | |
| VTR_ASSERT(timing_info); | |
| timing_info->update(); //Tatum | |
| critical_path = timing_info->least_slack_critical_path(); | |
| if(isEchoFileEnabled(E_ECHO_FINAL_PLACEMENT_TIMING_GRAPH)) { | |
| auto& timing_ctx = g_vpr_ctx.timing(); | |
| tatum::write_echo(getEchoFileName(E_ECHO_FINAL_PLACEMENT_TIMING_GRAPH), | |
| *timing_ctx.graph, *timing_ctx.constraints, *placement_delay_calc, timing_info->analyzer()); | |
| } | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| //Old VPR analyzer | |
| load_timing_graph_net_delays(point_to_point_delay_cost); | |
| do_timing_analysis(slacks, timing_inf, false, true); | |
| #endif | |
| /* Print critical path delay. */ | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("Placement estimated critical path delay: %g ns", | |
| 1e9*critical_path.delay(), get_critical_path_delay()); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| vtr::printf_info(" (classic VPR STA %g ns)", get_critical_path_delay()); | |
| #endif | |
| vtr::printf("\n"); | |
| vtr::printf_info("Placement estimated setup Total Negative Slack (sTNS): %g ns\n", | |
| 1e9*timing_info->setup_total_negative_slack()); | |
| vtr::printf_info("Placement estimated setup Worst Negative Slack (sWNS): %g ns\n", | |
| 1e9*timing_info->setup_worst_negative_slack()); | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("Placement estimated setup slack histogram:\n"); | |
| print_histogram(create_setup_slack_histogram(*timing_info->setup_analyzer())); | |
| vtr::printf_info("\n"); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| float cpd_diff_ns = std::abs(get_critical_path_delay() - 1e9*critical_path.delay()); | |
| if(cpd_diff_ns > ERROR_TOL) { | |
| print_classic_cpds(); | |
| print_tatum_cpds(timing_info->critical_paths()); | |
| vpr_throw(VPR_ERROR_TIMING, __FILE__, __LINE__, "Classic VPR and Tatum critical paths do not match (%g and %g respectively)", get_critical_path_delay(), 1e9*critical_path.delay()); | |
| } | |
| #endif | |
| } | |
| sprintf(msg, "Placement. Cost: %g bb_cost: %g td_cost: %g Channel Factor: %d", | |
| cost, bb_cost, timing_cost, width_fac); | |
| vtr::printf_info("Placement cost: %g, bb_cost: %g, td_cost: %g, delay_cost: %g\n", | |
| cost, bb_cost, timing_cost, delay_cost); | |
| update_screen(ScreenUpdatePriority::MAJOR, msg, PLACEMENT, timing_info); | |
| // Print out swap statistics | |
| size_t total_swap_attempts = num_swap_rejected + num_swap_accepted + num_swap_aborted; | |
| VTR_ASSERT(total_swap_attempts > 0); | |
| size_t num_swap_print_digits = ceil(log10(total_swap_attempts)); | |
| float reject_rate = (float) num_swap_rejected / total_swap_attempts; | |
| float accept_rate = (float) num_swap_accepted / total_swap_attempts; | |
| float abort_rate = (float) num_swap_aborted / total_swap_attempts; | |
| vtr::printf_info("Placement total # of swap attempts: %*d\n", num_swap_print_digits, total_swap_attempts); | |
| vtr::printf_info("\tSwaps accepted: %*d (%4.1f %%)\n", num_swap_print_digits, num_swap_accepted, 100*accept_rate); | |
| vtr::printf_info("\tSwaps rejected: %*d (%4.1f %%)\n", num_swap_print_digits, num_swap_rejected, 100*reject_rate); | |
| vtr::printf_info("\tSwaps aborted : %*d (%4.1f %%)\n", num_swap_print_digits, num_swap_aborted, 100*abort_rate); | |
| free_placement_structs(placer_opts); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE | |
| || placer_opts.enable_timing_computations) { | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| free_timing_graph(slacks); | |
| #endif | |
| free_lookups_and_criticalities(); | |
| } | |
| free_try_swap_arrays(); | |
| } | |
| /* Function to recompute the criticalities before the inner loop of the annealing */ | |
| static void outer_loop_recompute_criticalities(t_placer_opts placer_opts, | |
| int num_connections, float crit_exponent, float bb_cost, | |
| float * place_delay_value, float * timing_cost, float * delay_cost, | |
| int * outer_crit_iter_count, float * inverse_prev_timing_cost, | |
| float * inverse_prev_bb_cost, | |
| const ClusteredPinAtomPinsLookup& netlist_pin_lookup, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_slack* slacks, | |
| t_timing_inf timing_inf, | |
| #endif | |
| SetupTimingInfo& timing_info) { | |
| if (placer_opts.place_algorithm != PATH_TIMING_DRIVEN_PLACE) | |
| return; | |
| /*at each temperature change we update these values to be used */ | |
| /*for normalizing the tradeoff between timing and wirelength (bb) */ | |
| if (*outer_crit_iter_count >= placer_opts.recompute_crit_iter | |
| || placer_opts.inner_loop_recompute_divider != 0) { | |
| #ifdef VERBOSE | |
| vtr::printf_info("Outer loop recompute criticalities\n"); | |
| #endif | |
| num_connections = std::max(num_connections, 1); //Avoid division by zero | |
| VTR_ASSERT(num_connections > 0); | |
| *place_delay_value = (*delay_cost) / num_connections; | |
| //Per-temperature timing update | |
| timing_info.update(); | |
| load_criticalities(timing_info, crit_exponent, netlist_pin_lookup); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| load_timing_graph_net_delays(point_to_point_delay_cost); | |
| do_timing_analysis(slacks, timing_inf, false, true); | |
| #endif | |
| /*recompute costs from scratch, based on new criticalities */ | |
| comp_td_costs(timing_cost, delay_cost); | |
| *outer_crit_iter_count = 0; | |
| } | |
| (*outer_crit_iter_count)++; | |
| /*at each temperature change we update these values to be used */ | |
| /*for normalizing the tradeoff between timing and wirelength (bb) */ | |
| *inverse_prev_bb_cost = 1 / bb_cost; | |
| /*Prevent inverse timing cost from going to infinity */ | |
| *inverse_prev_timing_cost = min(1 / (*timing_cost), (float)MAX_INV_TIMING_COST); | |
| } | |
| /* Function which contains the inner loop of the simulated annealing */ | |
| static void placement_inner_loop(float t, float rlim, t_placer_opts placer_opts, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, int move_lim, | |
| float crit_exponent, int inner_recompute_limit, | |
| t_placer_statistics *stats, float * cost, float * bb_cost, float * timing_cost, | |
| float * delay_cost, | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| t_slack* slacks, | |
| t_timing_inf timing_inf, | |
| #endif | |
| const ClusteredPinAtomPinsLookup& netlist_pin_lookup, | |
| SetupTimingInfo& timing_info) { | |
| int inner_crit_iter_count, inner_iter; | |
| stats->av_cost = 0.; | |
| stats->av_bb_cost = 0.; | |
| stats->av_delay_cost = 0.; | |
| stats->av_timing_cost = 0.; | |
| stats->sum_of_squares = 0.; | |
| stats->success_sum = 0; | |
| inner_crit_iter_count = 1; | |
| /* Inner loop begins */ | |
| for (inner_iter = 0; inner_iter < move_lim; inner_iter++) { | |
| e_swap_result swap_result = try_swap(t, cost, bb_cost, timing_cost, rlim, | |
| placer_opts.place_algorithm, placer_opts.timing_tradeoff, | |
| inverse_prev_bb_cost, inverse_prev_timing_cost, delay_cost); | |
| if (swap_result == ACCEPTED) { | |
| /* Move was accepted. Update statistics that are useful for the annealing schedule. */ | |
| stats->success_sum++; | |
| stats->av_cost += *cost; | |
| stats->av_bb_cost += *bb_cost; | |
| stats->av_timing_cost += *timing_cost; | |
| stats->av_delay_cost += *delay_cost; | |
| stats->sum_of_squares += (*cost) * (*cost); | |
| num_swap_accepted++; | |
| } | |
| else if (swap_result == ABORTED) { | |
| num_swap_aborted++; | |
| } | |
| else { // swap_result == REJECTED | |
| num_swap_rejected++; | |
| } | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| /* Do we want to re-timing analyze the circuit to get updated slack and criticality values? | |
| * We do this only once in a while, since it is expensive. | |
| */ | |
| if (inner_crit_iter_count >= inner_recompute_limit | |
| && inner_iter != move_lim - 1) { /*on last iteration don't recompute */ | |
| inner_crit_iter_count = 0; | |
| #ifdef VERBOSE | |
| vtr::printf("Inner loop recompute criticalities\n"); | |
| #endif | |
| /* Using the delays in net_delay, do a timing analysis to update slacks and | |
| * criticalities; then update the timing cost since it will change. | |
| */ | |
| //Inner loop timing update | |
| timing_info.update(); | |
| load_criticalities(timing_info, crit_exponent, netlist_pin_lookup); | |
| #ifdef ENABLE_CLASSIC_VPR_STA | |
| load_timing_graph_net_delays(point_to_point_delay_cost); | |
| do_timing_analysis(slacks, timing_inf, false, true); | |
| #endif | |
| comp_td_costs(timing_cost, delay_cost); | |
| } | |
| inner_crit_iter_count++; | |
| } | |
| #ifdef VERBOSE | |
| vtr::printf("t = %g cost = %g bb_cost = %g timing_cost = %g move = %d dmax = %g\n", | |
| t, *cost, *bb_cost, *timing_cost, inner_iter, *delay_cost); | |
| if (fabs((*bb_cost) - comp_bb_cost(CHECK)) > (*bb_cost) * ERROR_TOL) | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "fabs((*bb_cost) - comp_bb_cost(CHECK)) > (*bb_cost) * ERROR_TOL"); | |
| #endif | |
| } | |
| /* Inner loop ends */ | |
| } | |
| /*only count non-global connections */ | |
| static int count_connections() { | |
| int count = 0; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| if (cluster_ctx.clb_nlist.net_is_global(net_id)) | |
| continue; | |
| count += cluster_ctx.clb_nlist.net_sinks(net_id).size(); | |
| } | |
| return (count); | |
| } | |
| static double get_std_dev(int n, double sum_x_squared, double av_x) { | |
| /* Returns the standard deviation of data set x. There are n sample points, * | |
| * sum_x_squared is the summation over n of x^2 and av_x is the average x. * | |
| * All operations are done in double precision, since round off error can be * | |
| * a problem in the initial temp. std_dev calculation for big circuits. */ | |
| double std_dev; | |
| if (n <= 1) | |
| std_dev = 0.; | |
| else | |
| std_dev = (sum_x_squared - n * av_x * av_x) / (double) (n - 1); | |
| if (std_dev > 0.) /* Very small variances sometimes round negative */ | |
| std_dev = sqrt(std_dev); | |
| else | |
| std_dev = 0.; | |
| return (std_dev); | |
| } | |
| static void update_rlim(float *rlim, float success_rat, const DeviceGrid& grid) { | |
| /* Update the range limited to keep acceptance prob. near 0.44. Use * | |
| * a floating point rlim to allow gradual transitions at low temps. */ | |
| float upper_lim; | |
| *rlim = (*rlim) * (1. - 0.44 + success_rat); | |
| upper_lim = max(grid.width() - 1, grid.height() - 1); | |
| *rlim = min(*rlim, upper_lim); | |
| *rlim = max(*rlim, (float)1.); | |
| } | |
| /* Update the temperature according to the annealing schedule selected. */ | |
| static void update_t(float *t, float rlim, float success_rat, | |
| t_annealing_sched annealing_sched) { | |
| /* float fac; */ | |
| if (annealing_sched.type == USER_SCHED) { | |
| *t = annealing_sched.alpha_t * (*t); | |
| } else { /* AUTO_SCHED */ | |
| if (success_rat > 0.96) { | |
| *t = (*t) * 0.5; | |
| } else if (success_rat > 0.8) { | |
| *t = (*t) * 0.9; | |
| } else if (success_rat > 0.15 || rlim > 1.) { | |
| *t = (*t) * 0.95; | |
| } else { | |
| *t = (*t) * 0.8; | |
| } | |
| } | |
| } | |
| static int exit_crit(float t, float cost, | |
| t_annealing_sched annealing_sched) { | |
| /* Return 1 when the exit criterion is met. */ | |
| if (annealing_sched.type == USER_SCHED) { | |
| if (t < annealing_sched.exit_t) { | |
| return (1); | |
| } else { | |
| return (0); | |
| } | |
| } | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| /* Automatic annealing schedule */ | |
| float t_exit = 0.005 * cost / cluster_ctx.clb_nlist.nets().size(); | |
| if (t < t_exit) { | |
| return (1); | |
| } else if (std::isnan(t_exit)) { | |
| //May get nan if there are no nets | |
| return (1); | |
| } else { | |
| return (0); | |
| } | |
| } | |
| static float starting_t(float *cost_ptr, float *bb_cost_ptr, | |
| float *timing_cost_ptr, | |
| t_annealing_sched annealing_sched, int max_moves, float rlim, | |
| enum e_place_algorithm place_algorithm, float timing_tradeoff, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, | |
| float *delay_cost_ptr) { | |
| /* Finds the starting temperature (hot condition). */ | |
| int i, num_accepted, move_lim; | |
| double std_dev, av, sum_of_squares; /* Double important to avoid round off */ | |
| if (annealing_sched.type == USER_SCHED) | |
| return (annealing_sched.init_t); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| move_lim = min(max_moves, (int) cluster_ctx.clb_nlist.blocks().size()); | |
| num_accepted = 0; | |
| av = 0.; | |
| sum_of_squares = 0.; | |
| /* Try one move per block. Set t high so essentially all accepted. */ | |
| for (i = 0; i < move_lim; i++) { | |
| e_swap_result swap_result = try_swap(HUGE_POSITIVE_FLOAT, cost_ptr, bb_cost_ptr, timing_cost_ptr, rlim, | |
| place_algorithm, timing_tradeoff, | |
| inverse_prev_bb_cost, inverse_prev_timing_cost, delay_cost_ptr); | |
| if (swap_result == ACCEPTED) { | |
| num_accepted++; | |
| av += *cost_ptr; | |
| sum_of_squares += *cost_ptr * (*cost_ptr); | |
| num_swap_accepted++; | |
| } else if (swap_result == ABORTED) { | |
| num_swap_aborted++; | |
| } else { | |
| num_swap_rejected++; | |
| } | |
| } | |
| if (num_accepted != 0) | |
| av /= num_accepted; | |
| else | |
| av = 0.; | |
| std_dev = get_std_dev(num_accepted, sum_of_squares, av); | |
| if (num_accepted != move_lim) { | |
| vtr::printf_warning(__FILE__, __LINE__, | |
| "Starting t: %d of %d configurations accepted.\n", num_accepted, move_lim); | |
| } | |
| #ifdef VERBOSE | |
| vtr::printf_info("std_dev: %g, average cost: %g, starting temp: %g\n", std_dev, av, 20. * std_dev); | |
| #endif | |
| /* Set the initial temperature to 20 times the standard of deviation */ | |
| /* so that the initial temperature adjusts according to the circuit */ | |
| return (20. * std_dev); | |
| } | |
| static int setup_blocks_affected(ClusterBlockId b_from, int x_to, int y_to, int z_to) { | |
| /* Find all the blocks affected when b_from is swapped with b_to. | |
| * Returns abort_swap. */ | |
| int imoved_blk, imacro; | |
| int x_from, y_from, z_from; | |
| ClusterBlockId b_to; | |
| int abort_swap = false; | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| x_from = place_ctx.block_locs[b_from].x; | |
| y_from = place_ctx.block_locs[b_from].y; | |
| z_from = place_ctx.block_locs[b_from].z; | |
| b_to = place_ctx.grid_blocks[x_to][y_to].blocks[z_to]; | |
| // Check whether the to_location is empty | |
| if (b_to == EMPTY_BLOCK_ID) { | |
| // Swap the block, dont swap the nets yet | |
| place_ctx.block_locs[b_from].x = x_to; | |
| place_ctx.block_locs[b_from].y = y_to; | |
| place_ctx.block_locs[b_from].z = z_to; | |
| // Sets up the blocks moved | |
| imoved_blk = blocks_affected.num_moved_blocks; | |
| blocks_affected.moved_blocks[imoved_blk].block_num = b_from; | |
| blocks_affected.moved_blocks[imoved_blk].xold = x_from; | |
| blocks_affected.moved_blocks[imoved_blk].xnew = x_to; | |
| blocks_affected.moved_blocks[imoved_blk].yold = y_from; | |
| blocks_affected.moved_blocks[imoved_blk].ynew = y_to; | |
| blocks_affected.moved_blocks[imoved_blk].zold = z_from; | |
| blocks_affected.moved_blocks[imoved_blk].znew = z_to; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_to_was_empty = true; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_from_is_empty = true; | |
| blocks_affected.num_moved_blocks ++; | |
| } else if (b_to != INVALID_BLOCK_ID) { | |
| // Does not allow a swap with a macro yet | |
| get_imacro_from_iblk(&imacro, b_to, pl_macros, num_pl_macros); | |
| if (imacro != -1) { | |
| abort_swap = true; | |
| return (abort_swap); | |
| } | |
| // Swap the block, dont swap the nets yet | |
| place_ctx.block_locs[b_to].x = x_from; | |
| place_ctx.block_locs[b_to].y = y_from; | |
| place_ctx.block_locs[b_to].z = z_from; | |
| place_ctx.block_locs[b_from].x = x_to; | |
| place_ctx.block_locs[b_from].y = y_to; | |
| place_ctx.block_locs[b_from].z = z_to; | |
| // Sets up the blocks moved | |
| imoved_blk = blocks_affected.num_moved_blocks; | |
| blocks_affected.moved_blocks[imoved_blk].block_num = b_from; | |
| blocks_affected.moved_blocks[imoved_blk].xold = x_from; | |
| blocks_affected.moved_blocks[imoved_blk].xnew = x_to; | |
| blocks_affected.moved_blocks[imoved_blk].yold = y_from; | |
| blocks_affected.moved_blocks[imoved_blk].ynew = y_to; | |
| blocks_affected.moved_blocks[imoved_blk].zold = z_from; | |
| blocks_affected.moved_blocks[imoved_blk].znew = z_to; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_to_was_empty = false; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_from_is_empty = false; | |
| blocks_affected.num_moved_blocks ++; | |
| imoved_blk = blocks_affected.num_moved_blocks; | |
| blocks_affected.moved_blocks[imoved_blk].block_num = b_to; | |
| blocks_affected.moved_blocks[imoved_blk].xold = x_to; | |
| blocks_affected.moved_blocks[imoved_blk].xnew = x_from; | |
| blocks_affected.moved_blocks[imoved_blk].yold = y_to; | |
| blocks_affected.moved_blocks[imoved_blk].ynew = y_from; | |
| blocks_affected.moved_blocks[imoved_blk].zold = z_to; | |
| blocks_affected.moved_blocks[imoved_blk].znew = z_from; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_to_was_empty = false; | |
| blocks_affected.moved_blocks[imoved_blk].swapped_from_is_empty = false; | |
| blocks_affected.num_moved_blocks ++; | |
| } // Finish swapping the blocks and setting up blocks_affected | |
| return (abort_swap); | |
| } | |
| static int find_affected_blocks(ClusterBlockId b_from, int x_to, int y_to, int z_to) { | |
| /* Finds and set ups the affected_blocks array. | |
| * Returns abort_swap. */ | |
| int imacro, imember; | |
| int x_swap_offset, y_swap_offset, z_swap_offset, x_from, y_from, z_from; | |
| ClusterBlockId curr_b_from; | |
| int curr_x_from, curr_y_from, curr_z_from, curr_x_to, curr_y_to, curr_z_to; | |
| int abort_swap = false; | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| x_from = place_ctx.block_locs[b_from].x; | |
| y_from = place_ctx.block_locs[b_from].y; | |
| z_from = place_ctx.block_locs[b_from].z; | |
| get_imacro_from_iblk(&imacro, b_from, pl_macros, num_pl_macros); | |
| if ( imacro != -1) { | |
| // b_from is part of a macro, I need to swap the whole macro | |
| // Record down the relative position of the swap | |
| x_swap_offset = x_to - x_from; | |
| y_swap_offset = y_to - y_from; | |
| z_swap_offset = z_to - z_from; | |
| for (imember = 0; imember < pl_macros[imacro].num_blocks && abort_swap == false; imember++) { | |
| // Gets the new from and to info for every block in the macro | |
| // cannot use the old from and to info | |
| curr_b_from = pl_macros[imacro].members[imember].blk_index; | |
| curr_x_from = place_ctx.block_locs[curr_b_from].x; | |
| curr_y_from = place_ctx.block_locs[curr_b_from].y; | |
| curr_z_from = place_ctx.block_locs[curr_b_from].z; | |
| curr_x_to = curr_x_from + x_swap_offset; | |
| curr_y_to = curr_y_from + y_swap_offset; | |
| curr_z_to = curr_z_from + z_swap_offset; | |
| //Make sure that the swap_to location is valid | |
| //It must be: | |
| // * chip, and | |
| // * match the correct block type | |
| // | |
| //Note that we need to explicitly check that the types match, since the device floorplan is not | |
| //(neccessarily) translationally invariant for an arbitrary macro | |
| if ( curr_x_to < 1 || curr_x_to >= int(device_ctx.grid.width()) | |
| || curr_y_to < 1 || curr_y_to >= int(device_ctx.grid.height()) | |
| || curr_z_to < 0 | |
| || device_ctx.grid[curr_x_to][curr_y_to].type != cluster_ctx.clb_nlist.block_type(curr_b_from)) { | |
| abort_swap = true; | |
| } else { | |
| abort_swap = setup_blocks_affected(curr_b_from, curr_x_to, curr_y_to, curr_z_to); | |
| } | |
| } // Finish going through all the blocks in the macro | |
| } else { | |
| // This is not a macro - I could use the from and to info from before | |
| abort_swap = setup_blocks_affected(b_from, x_to, y_to, z_to); | |
| } // Finish handling cases for blocks in macro and otherwise | |
| return (abort_swap); | |
| } | |
| static e_swap_result try_swap(float t, float *cost, float *bb_cost, float *timing_cost, | |
| float rlim, | |
| enum e_place_algorithm place_algorithm, float timing_tradeoff, | |
| float inverse_prev_bb_cost, float inverse_prev_timing_cost, | |
| float *delay_cost) { | |
| /* Picks some block and moves it to another spot. If this spot is * | |
| * occupied, switch the blocks. Assess the change in cost function. * | |
| * rlim is the range limiter. * | |
| * Returns whether the swap is accepted, rejected or aborted. * | |
| * Passes back the new value of the cost functions. */ | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| num_ts_called ++; | |
| if((int) cluster_ctx.clb_nlist.blocks().size() == 0) { | |
| //Empty netlist, no valid swap possible | |
| return ABORTED; | |
| } | |
| /* I'm using negative values of temp_net_cost as a flag, so DO NOT * | |
| * use cost functions that can go negative. */ | |
| float delta_c = 0; /* Change in cost due to this swap. */ | |
| float bb_delta_c = 0; | |
| float timing_delta_c = 0; | |
| float delay_delta_c = 0.0; | |
| /* Pick a random block to be swapped with another random block */ | |
| auto b_from = ClusterBlockId(vtr::irand((int) cluster_ctx.clb_nlist.blocks().size() - 1)); | |
| /* If the pins are fixed we never move them from their initial * | |
| * random locations. The code below could be made more efficient * | |
| * by using the fact that pins appear first in the block list, * | |
| * but this shouldn't cause any significant slowdown and won't be * | |
| * broken if I ever change the parser so that the pins aren't * | |
| * necessarily at the start of the block list. */ | |
| while (place_ctx.block_locs[b_from].is_fixed == true) { | |
| b_from = (ClusterBlockId)vtr::irand((int) cluster_ctx.clb_nlist.blocks().size() - 1); | |
| } | |
| int x_from = place_ctx.block_locs[b_from].x; | |
| int y_from = place_ctx.block_locs[b_from].y; | |
| int z_from = place_ctx.block_locs[b_from].z; | |
| int x_to = OPEN; | |
| int y_to = OPEN; | |
| int z_to = OPEN; | |
| auto cluster_from_type = cluster_ctx.clb_nlist.block_type(b_from); | |
| auto grid_from_type = g_vpr_ctx.device().grid[x_from][y_from].type; | |
| VTR_ASSERT(cluster_from_type == grid_from_type); | |
| if (!find_to(cluster_ctx.clb_nlist.block_type(b_from), rlim, x_from, y_from, &x_to, &y_to, &z_to)) | |
| return REJECTED; | |
| #if 0 | |
| auto& grid = g_vpr_ctx.device().grid; | |
| int b_to = place_ctx.grid_blocks[x_to][y_to].blocks[z_to]; | |
| vtr::printf_info( "swap [%d][%d][%d] %s \"%s\" <=> [%d][%d][%d] %s \"%s\"\n", | |
| x_from, y_from, z_from, grid[x_from][y_from].type->name, (b_from != -1 ? cluster_ctx.blocks[b_from].name : ""), | |
| x_to, y_to, z_to, grid[x_to][y_to].type->name, (b_to != -1 ? cluster_ctx.blocks[b_to].name : "")); | |
| #endif | |
| /* Make the switch in order to make computing the new bounding * | |
| * box simpler. If the cost increase is too high, switch them * | |
| * back. (place_ctx.block_locs data structures switched, clbs not switched * | |
| * until success of move is determined.) * | |
| * Also check that whether those are the only 2 blocks * | |
| * to be moved - check for carry chains and other placement * | |
| * macros. */ | |
| /* Check whether the from_block is part of a macro first. * | |
| * If it is, the whole macro has to be moved. Calculate the * | |
| * x, y, z offsets of the swap to maintain relative placements * | |
| * of the blocks. Abort the swap if the to_block is part of a * | |
| * macro (not supported yet). */ | |
| bool abort_swap = find_affected_blocks(b_from, x_to, y_to, z_to); | |
| if (abort_swap == false) { | |
| // Find all the nets affected by this swap and update thier bounding box | |
| int num_nets_affected = find_affected_nets_and_update_costs(place_algorithm, bb_delta_c, timing_delta_c, delay_delta_c); | |
| if (place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| /*in this case we redefine delta_c as a combination of timing and bb. * | |
| *additionally, we normalize all values, therefore delta_c is in * | |
| *relation to 1*/ | |
| delta_c = (1 - timing_tradeoff) * bb_delta_c * inverse_prev_bb_cost | |
| + timing_tradeoff * timing_delta_c * inverse_prev_timing_cost; | |
| } else { | |
| delta_c = bb_delta_c; | |
| } | |
| /* 1 -> move accepted, 0 -> rejected. */ | |
| e_swap_result keep_switch = assess_swap(delta_c, t); | |
| if (keep_switch == ACCEPTED) { | |
| *cost = *cost + delta_c; | |
| *bb_cost = *bb_cost + bb_delta_c; | |
| if (place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| /*update the point_to_point_timing_cost and point_to_point_delay_cost | |
| * values from the temporary values */ | |
| *timing_cost = *timing_cost + timing_delta_c; | |
| *delay_cost = *delay_cost + delay_delta_c; | |
| update_td_cost(); | |
| } | |
| /* update net cost functions and reset flags. */ | |
| for (int inet_affected = 0; inet_affected < num_nets_affected; inet_affected++) { | |
| ClusterNetId net_id = ts_nets_to_update[inet_affected]; | |
| bb_coords[net_id] = ts_bb_coord_new[net_id]; | |
| if (cluster_ctx.clb_nlist.net_sinks(net_id).size() >= SMALL_NET) | |
| bb_num_on_edges[net_id] = ts_bb_edge_new[net_id]; | |
| net_cost[net_id] = temp_net_cost[net_id]; | |
| /* negative temp_net_cost value is acting as a flag. */ | |
| temp_net_cost[net_id] = -1; | |
| bb_updated_before[net_id] = NOT_UPDATED_YET; | |
| } | |
| /* Update clb data structures since we kept the move. */ | |
| /* Swap physical location */ | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| x_to = blocks_affected.moved_blocks[iblk].xnew; | |
| y_to = blocks_affected.moved_blocks[iblk].ynew; | |
| z_to = blocks_affected.moved_blocks[iblk].znew; | |
| x_from = blocks_affected.moved_blocks[iblk].xold; | |
| y_from = blocks_affected.moved_blocks[iblk].yold; | |
| z_from = blocks_affected.moved_blocks[iblk].zold; | |
| b_from = blocks_affected.moved_blocks[iblk].block_num; | |
| place_ctx.grid_blocks[x_to][y_to].blocks[z_to] = b_from; | |
| if (blocks_affected.moved_blocks[iblk].swapped_to_was_empty) { | |
| place_ctx.grid_blocks[x_to][y_to].usage++; | |
| } | |
| if (blocks_affected.moved_blocks[iblk].swapped_from_is_empty) { | |
| place_ctx.grid_blocks[x_from][y_from].usage--; | |
| place_ctx.grid_blocks[x_from][y_from].blocks[z_from] = EMPTY_BLOCK_ID; | |
| } | |
| } // Finish updating clb for all blocks | |
| } else { /* Move was rejected. */ | |
| /* Reset the net cost function flags first. */ | |
| for (int inet_affected = 0; inet_affected < num_nets_affected; inet_affected++) { | |
| ClusterNetId net_id = ts_nets_to_update[inet_affected]; | |
| temp_net_cost[net_id] = -1; | |
| bb_updated_before[net_id] = NOT_UPDATED_YET; | |
| } | |
| /* Restore the place_ctx.block_locs data structures to their state before the move. */ | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| b_from = blocks_affected.moved_blocks[iblk].block_num; | |
| place_ctx.block_locs[b_from].x = blocks_affected.moved_blocks[iblk].xold; | |
| place_ctx.block_locs[b_from].y = blocks_affected.moved_blocks[iblk].yold; | |
| place_ctx.block_locs[b_from].z = blocks_affected.moved_blocks[iblk].zold; | |
| } | |
| } | |
| /* Resets the num_moved_blocks, but do not free blocks_moved array. Defensive Coding */ | |
| blocks_affected.num_moved_blocks = 0; | |
| #if 0 | |
| //Check that each accepted swap yields a valid placement | |
| check_place(*bb_cost, *timing_cost, place_algorithm, *delay_cost); | |
| #endif | |
| return (keep_switch); | |
| } else { | |
| /* Restore the place_ctx.block_locs data structures to their state before the move. */ | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| b_from = blocks_affected.moved_blocks[iblk].block_num; | |
| place_ctx.block_locs[b_from].x = blocks_affected.moved_blocks[iblk].xold; | |
| place_ctx.block_locs[b_from].y = blocks_affected.moved_blocks[iblk].yold; | |
| place_ctx.block_locs[b_from].z = blocks_affected.moved_blocks[iblk].zold; | |
| } | |
| /* Resets the num_moved_blocks, but do not free blocks_moved array. Defensive Coding */ | |
| blocks_affected.num_moved_blocks = 0; | |
| return ABORTED; | |
| } | |
| } | |
| //Puts all the nets changed by the current swap into nets_to_update, | |
| //and updates their bounding box. | |
| // | |
| //Returns the number of affected nets. | |
| static int find_affected_nets_and_update_costs(e_place_algorithm place_algorithm, float& bb_delta_c, float& timing_delta_c, float& delay_delta_c) { | |
| VTR_ASSERT_SAFE(bb_delta_c == 0.); | |
| VTR_ASSERT_SAFE(timing_delta_c == 0.); | |
| VTR_ASSERT_SAFE(delay_delta_c == 0.); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| int num_affected_nets = 0; | |
| //Go through all the blocks moved | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| ClusterBlockId blk = blocks_affected.moved_blocks[iblk].block_num; | |
| //Go through all the pins in the moved block | |
| for (ClusterPinId blk_pin : cluster_ctx.clb_nlist.block_pins(blk)) { | |
| ClusterNetId net_id = cluster_ctx.clb_nlist.pin_net(blk_pin); | |
| VTR_ASSERT_SAFE_MSG(net_id, "Only valid nets should be found in compressed netlist block pins"); | |
| if (cluster_ctx.clb_nlist.net_is_global(net_id)) | |
| continue; //Global nets are assumed to span the whole chip, and do not effect costs | |
| //Record effected nets | |
| record_affected_net(net_id, num_affected_nets); | |
| //Update the net bounding boxes | |
| // | |
| //Do not update the net cost here since it should only be updated | |
| //once per net, not once per pin. | |
| update_net_bb(net_id, iblk, blk, blk_pin); | |
| if (place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| //Determine the change in timing costs if required | |
| update_td_delta_costs(net_id, blk_pin, timing_delta_c, delay_delta_c); | |
| } | |
| } | |
| } | |
| /* Now update the bounding box costs (since the net bounding boxes are up-to-date). | |
| * The cost is only updated once per net. | |
| */ | |
| for (int inet_affected = 0; inet_affected < num_affected_nets; inet_affected++) { | |
| ClusterNetId net_id = ts_nets_to_update[inet_affected]; | |
| temp_net_cost[net_id] = get_net_cost(net_id, &ts_bb_coord_new[net_id]); | |
| bb_delta_c += temp_net_cost[net_id] - net_cost[net_id]; | |
| } | |
| return num_affected_nets; | |
| } | |
| static void record_affected_net(const ClusterNetId net, int& num_affected_nets) { | |
| //Record effected nets | |
| if (temp_net_cost[net] < 0.) { | |
| //Net not marked yet. | |
| ts_nets_to_update[num_affected_nets] = net; | |
| num_affected_nets++; | |
| //Flag to say we've marked this net. | |
| temp_net_cost[net] = 1.; | |
| } | |
| } | |
| static void update_net_bb(const ClusterNetId net, int iblk, const ClusterBlockId blk, const ClusterPinId blk_pin) { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| if (cluster_ctx.clb_nlist.net_sinks(net).size() < SMALL_NET) { | |
| //For small nets brute-force bounding box update is faster | |
| if(bb_updated_before[net] == NOT_UPDATED_YET) { //Only once per-net | |
| get_non_updateable_bb(net, &ts_bb_coord_new[net]); | |
| } | |
| } else { | |
| //For large nets, update bounding box incrementally | |
| int iblk_pin = cluster_ctx.clb_nlist.pin_physical_index(blk_pin); | |
| t_type_ptr blk_type = cluster_ctx.clb_nlist.block_type(blk); | |
| int pin_width_offset = blk_type->pin_width_offset[iblk_pin]; | |
| int pin_height_offset = blk_type->pin_height_offset[iblk_pin]; | |
| //Incremental bounding box update | |
| update_bb(net, &ts_bb_coord_new[net], | |
| &ts_bb_edge_new[net], | |
| blocks_affected.moved_blocks[iblk].xold + pin_width_offset, | |
| blocks_affected.moved_blocks[iblk].yold + pin_height_offset, | |
| blocks_affected.moved_blocks[iblk].xnew + pin_width_offset, | |
| blocks_affected.moved_blocks[iblk].ynew + pin_height_offset); | |
| } | |
| } | |
| static void update_td_delta_costs(const ClusterNetId net, const ClusterPinId pin, float& delta_timing_cost, float& delta_delay_cost) { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| if (cluster_ctx.clb_nlist.pin_type(pin) == PinType::DRIVER) { | |
| //This pin is a net driver on a moved block. | |
| //Re-compute all point to point connections for this net. | |
| for (size_t ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net).size(); ipin++) { | |
| float temp_delay = comp_td_point_to_point_delay(net, ipin); | |
| temp_point_to_point_delay_cost[net][ipin] = temp_delay; | |
| temp_point_to_point_timing_cost[net][ipin] = get_timing_place_crit(net, ipin) * temp_delay; | |
| delta_timing_cost += temp_point_to_point_timing_cost[net][ipin] - point_to_point_timing_cost[net][ipin]; | |
| delta_delay_cost += temp_point_to_point_delay_cost[net][ipin] - point_to_point_delay_cost[net][ipin]; | |
| } | |
| } else { | |
| //This pin is a net sink on a moved block | |
| VTR_ASSERT_SAFE(cluster_ctx.clb_nlist.pin_type(pin) == PinType::SINK); | |
| //If this net is being driven by a moved block, we do not | |
| //need to compute the change in the timing cost (here) since it will | |
| //be computed by the net's driver pin (since the driver block moved). | |
| // | |
| //Computing it here would double count the change, and mess up the | |
| //delta_timing_cost value. | |
| if (!driven_by_moved_block(net)) { | |
| int net_pin = cluster_ctx.clb_nlist.pin_net_index(pin); | |
| float temp_delay = comp_td_point_to_point_delay(net, net_pin); | |
| temp_point_to_point_delay_cost[net][net_pin] = temp_delay; | |
| temp_point_to_point_timing_cost[net][net_pin] = get_timing_place_crit(net, net_pin) * temp_delay; | |
| delta_timing_cost += temp_point_to_point_timing_cost[net][net_pin] - point_to_point_timing_cost[net][net_pin]; | |
| delta_delay_cost += temp_point_to_point_delay_cost[net][net_pin] - point_to_point_delay_cost[net][net_pin]; | |
| } | |
| } | |
| } | |
| static bool find_to(t_type_ptr type, float rlim, | |
| int x_from, int y_from, | |
| int *px_to, int *py_to, int *pz_to) { | |
| /* Returns the point to which I want to swap, properly range limited. | |
| * rlim must always be between 1 and device_ctx.grid.width() - 2 (inclusive) for this routine | |
| * to work. Note -2 for no perim channels | |
| */ | |
| int min_x, max_x, min_y, max_y; | |
| int num_tries; | |
| int active_area; | |
| bool is_legal; | |
| int itype; | |
| auto& grid = g_vpr_ctx.device().grid; | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| auto grid_type = grid[x_from][y_from].type; | |
| VTR_ASSERT(type == grid_type); | |
| int rlx = min<float>(grid.width() - 1, rlim); | |
| int rly = min<float>(grid.height() - 1, rlim); /* Added rly for aspect_ratio != 1 case. */ | |
| active_area = 4 * rlx * rly; | |
| min_x = max<float>(0, x_from - rlx); | |
| max_x = min<float>(grid.width() - 1, x_from + rlx); | |
| min_y = max<float>(0, y_from - rly); | |
| max_y = min<float>(grid.height() - 1, y_from + rly); | |
| if (rlx < 1 || rlx > int(grid.width() - 1)) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__,"in find_to: rlx = %d out of range\n", rlx); | |
| } | |
| if (rly < 1 || rly > int(grid.height() - 1)) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__,"in find_to: rly = %d out of range\n", rly); | |
| } | |
| num_tries = 0; | |
| itype = type->index; | |
| do { /* Until legal */ | |
| is_legal = true; | |
| /* Limit the number of tries when searching for an alternative position */ | |
| if(num_tries >= 2 * min(active_area / (type->width * type->height), num_legal_pos[itype]) + 10) { | |
| /* Tried randomly searching for a suitable position */ | |
| return false; | |
| } else { | |
| num_tries++; | |
| } | |
| find_to_location(type, rlim, x_from, y_from, | |
| px_to, py_to, pz_to); | |
| if((x_from == *px_to) && (y_from == *py_to)) { | |
| is_legal = false; | |
| } else if(*px_to > max_x || *px_to < min_x || *py_to > max_y || *py_to < min_y) { | |
| is_legal = false; | |
| } else if(grid[*px_to][*py_to].type != grid[x_from][y_from].type) { | |
| is_legal = false; | |
| } else { | |
| /* Find z_to and test to validate that the "to" block is *not* fixed */ | |
| *pz_to = 0; | |
| if (grid[*px_to][*py_to].type->capacity > 1) { | |
| *pz_to = vtr::irand(grid[*px_to][*py_to].type->capacity - 1); | |
| } | |
| ClusterBlockId b_to = place_ctx.grid_blocks[*px_to][*py_to].blocks[*pz_to]; | |
| if ((b_to != EMPTY_BLOCK_ID) && (place_ctx.block_locs[b_to].is_fixed == true)) { | |
| is_legal = false; | |
| } | |
| } | |
| VTR_ASSERT(*px_to >= 0 && *px_to < int(grid.width())); | |
| VTR_ASSERT(*py_to >= 0 && *py_to < int(grid.height())); | |
| } while (is_legal == false); | |
| if (*px_to < 0 || *px_to > int(grid.width() - 1) || *py_to < 0 || *py_to > int(grid.height() - 1)) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__,"in routine find_to: (x_to,y_to) = (%d,%d)\n", *px_to, *py_to); | |
| } | |
| VTR_ASSERT(type == grid[*px_to][*py_to].type); | |
| return true; | |
| } | |
| static void find_to_location(t_type_ptr type, float rlim, | |
| int x_from, int y_from, | |
| int *px_to, int *py_to, int *pz_to) { | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& grid = device_ctx.grid; | |
| int itype = type->index; | |
| int rlx = min<float>(grid.width() - 1, rlim); | |
| int rly = min<float>(grid.height() - 1, rlim); /* Added rly for aspect_ratio != 1 case. */ | |
| int active_area = 4 * rlx * rly; | |
| int min_x = max<float>(0, x_from - rlx); | |
| int max_x = min<float>(grid.width() - 1, x_from + rlx); | |
| int min_y = max<float>(0, y_from - rly); | |
| int max_y = min<float>(grid.height() - 1, y_from + rly); | |
| *pz_to = 0; | |
| if (int(grid.width() / 4) < rlx || int(grid.height() / 4) < rly || num_legal_pos[itype] < active_area) { | |
| int ipos = vtr::irand(num_legal_pos[itype] - 1); | |
| *px_to = legal_pos[itype][ipos].x; | |
| *py_to = legal_pos[itype][ipos].y; | |
| *pz_to = legal_pos[itype][ipos].z; | |
| } else { | |
| int x_rel = vtr::irand(max(0, max_x - min_x)); | |
| int y_rel = vtr::irand(max(0, max_y - min_y)); | |
| *px_to = min_x + x_rel; | |
| *py_to = min_y + y_rel; | |
| *px_to = (*px_to) - grid[*px_to][*py_to].width_offset; /* align it */ | |
| *py_to = (*py_to) - grid[*px_to][*py_to].height_offset; /* align it */ | |
| } | |
| } | |
| static e_swap_result assess_swap(float delta_c, float t) { | |
| /* Returns: 1 -> move accepted, 0 -> rejected. */ | |
| e_swap_result accept; | |
| float prob_fac, fnum; | |
| if (delta_c <= 0) { | |
| /* Reduce variation in final solution due to round off */ | |
| fnum = vtr::frand(); | |
| accept = ACCEPTED; | |
| return (accept); | |
| } | |
| if (t == 0.) | |
| return (REJECTED); | |
| fnum = vtr::frand(); | |
| prob_fac = exp(-delta_c / t); | |
| if (prob_fac > fnum) { | |
| accept = ACCEPTED; | |
| } | |
| else { | |
| accept = REJECTED; | |
| } | |
| return (accept); | |
| } | |
| static float recompute_bb_cost() { | |
| /* Recomputes the cost to eliminate roundoff that may have accrued. * | |
| * This routine does as little work as possible to compute this new * | |
| * cost. */ | |
| float cost = 0; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { /* for each net ... */ | |
| if (!cluster_ctx.clb_nlist.net_is_global(net_id)) { /* Do only if not global. */ | |
| /* Bounding boxes don't have to be recomputed; they're correct. */ | |
| cost += net_cost[net_id]; | |
| } | |
| } | |
| return (cost); | |
| } | |
| /*returns the delay of one point to point connection */ | |
| static float comp_td_point_to_point_delay(ClusterNetId net_id, int ipin) { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| float delay_source_to_sink = 0.; | |
| if (!cluster_ctx.clb_nlist.net_is_global(net_id)) { | |
| //Only estimate delay for signals routed through the inter-block | |
| //routing network. Global signals are assumed to have zero delay. | |
| ClusterBlockId source_block = cluster_ctx.clb_nlist.net_driver_block(net_id); | |
| ClusterBlockId sink_block = cluster_ctx.clb_nlist.net_pin_block(net_id, ipin); | |
| VTR_ASSERT_SAFE(cluster_ctx.clb_nlist.block_type(source_block) != nullptr); | |
| VTR_ASSERT_SAFE(cluster_ctx.clb_nlist.block_type(sink_block) != nullptr); | |
| int delta_x = abs(place_ctx.block_locs[sink_block].x - place_ctx.block_locs[source_block].x); | |
| int delta_y = abs(place_ctx.block_locs[sink_block].y - place_ctx.block_locs[source_block].y); | |
| /* Note: This heuristic only considers delta_x and delta_y, a much better heuristic | |
| * would be to to create a more comprehensive lookup table. | |
| * | |
| * In particular this aproach does not accurately capture the effect of fast | |
| * carry-chain connections. | |
| */ | |
| delay_source_to_sink = get_delta_delay(delta_x, delta_y); | |
| if (delay_source_to_sink < 0) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "in comp_td_point_to_point_delay: Bad delay_source_to_sink value delta(%d, %d) delay of %g\n" | |
| "in comp_td_point_to_point_delay: Delay is less than 0\n", | |
| delta_x, delta_y, delay_source_to_sink); | |
| } | |
| } | |
| return (delay_source_to_sink); | |
| } | |
| //Recompute all point to point delays, updating point_to_point_delay_cost | |
| static void comp_td_point_to_point_delays() { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| for (size_t ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net_id).size(); ++ipin) { | |
| point_to_point_delay_cost[net_id][ipin] = comp_td_point_to_point_delay(net_id, ipin); | |
| } | |
| } | |
| } | |
| /* Update the point_to_point_timing_cost values from the temporary * | |
| * values for all connections that have changed. */ | |
| static void update_td_cost() { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| /* Go through all the blocks moved. */ | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| ClusterBlockId bnum = blocks_affected.moved_blocks[iblk].block_num; | |
| for (ClusterPinId pin_id : cluster_ctx.clb_nlist.block_pins(bnum)) { | |
| ClusterNetId net_id = cluster_ctx.clb_nlist.pin_net(pin_id); | |
| if (cluster_ctx.clb_nlist.net_is_global(net_id)) | |
| continue; | |
| if (cluster_ctx.clb_nlist.pin_type(pin_id) == PinType::DRIVER) { | |
| //This net is being driven by a moved block, recompute | |
| //all point to point connections on this net. | |
| for (size_t ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net_id).size(); ipin++) { | |
| point_to_point_delay_cost[net_id][ipin] = temp_point_to_point_delay_cost[net_id][ipin]; | |
| temp_point_to_point_delay_cost[net_id][ipin] = -1; | |
| point_to_point_timing_cost[net_id][ipin] = temp_point_to_point_timing_cost[net_id][ipin]; | |
| temp_point_to_point_timing_cost[net_id][ipin] = -1; | |
| } | |
| } else { | |
| //This pin is a net sink on a moved block | |
| VTR_ASSERT_SAFE(cluster_ctx.clb_nlist.pin_type(pin_id) == PinType::SINK); | |
| /* The following "if" prevents the value from being updated twice. */ | |
| if (!driven_by_moved_block(net_id)) { | |
| int net_pin = cluster_ctx.clb_nlist.pin_net_index(pin_id); | |
| point_to_point_delay_cost[net_id][net_pin] = temp_point_to_point_delay_cost[net_id][net_pin]; | |
| temp_point_to_point_delay_cost[net_id][net_pin] = -1; | |
| point_to_point_timing_cost[net_id][net_pin] = temp_point_to_point_timing_cost[net_id][net_pin]; | |
| temp_point_to_point_timing_cost[net_id][net_pin] = -1; | |
| } | |
| } | |
| } /* Finished going through all the pins in the moved block */ | |
| } /* Finished going through all the blocks moved */ | |
| } | |
| static bool driven_by_moved_block(const ClusterNetId net) { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| ClusterBlockId net_driver_block = cluster_ctx.clb_nlist.net_driver_block(net); | |
| for (int iblk = 0; iblk < blocks_affected.num_moved_blocks; iblk++) { | |
| if (net_driver_block == blocks_affected.moved_blocks[iblk].block_num) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| static void comp_td_costs(float *timing_cost, float *connection_delay_sum) { | |
| /* Computes the cost (from scratch) due to the delays and criticalities * | |
| * on all point to point connections, we define the timing cost of * | |
| * each connection as criticality*delay. */ | |
| unsigned ipin; | |
| float loc_timing_cost, loc_connection_delay_sum, temp_delay_cost, | |
| temp_timing_cost; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| loc_timing_cost = 0.; | |
| loc_connection_delay_sum = 0.; | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { /* For each net ... */ | |
| if (cluster_ctx.clb_nlist.net_is_global(net_id)) { /* Do only if not global. */ | |
| continue; | |
| } | |
| for (ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net_id).size(); ipin++) { | |
| temp_delay_cost = comp_td_point_to_point_delay(net_id, ipin); | |
| temp_timing_cost = temp_delay_cost * get_timing_place_crit(net_id, ipin); | |
| loc_connection_delay_sum += temp_delay_cost; | |
| point_to_point_delay_cost[net_id][ipin] = temp_delay_cost; | |
| temp_point_to_point_delay_cost[net_id][ipin] = -1; /* Undefined */ | |
| point_to_point_timing_cost[net_id][ipin] = temp_timing_cost; | |
| temp_point_to_point_timing_cost[net_id][ipin] = -1; /* Undefined */ | |
| loc_timing_cost += temp_timing_cost; | |
| } | |
| } | |
| /* Make sure timing cost does not go above MIN_TIMING_COST. */ | |
| *timing_cost = loc_timing_cost; | |
| *connection_delay_sum = loc_connection_delay_sum; | |
| } | |
| /* Finds the cost from scratch. Done only when the placement * | |
| * has been radically changed (i.e. after initial placement). * | |
| * Otherwise find the cost change incrementally. If method * | |
| * check is NORMAL, we find bounding boxes that are updateable * | |
| * for the larger nets. If method is CHECK, all bounding boxes * | |
| * are found via the non_updateable_bb routine, to provide a * | |
| * cost which can be used to check the correctness of the * | |
| * other routine. */ | |
| static float comp_bb_cost(e_cost_methods method) { | |
| float cost = 0; | |
| double expected_wirelength = 0.0; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { /* for each net ... */ | |
| if (!cluster_ctx.clb_nlist.net_is_global(net_id)) { /* Do only if not global. */ | |
| /* Small nets don't use incremental updating on their bounding boxes, * | |
| * so they can use a fast bounding box calculator. */ | |
| if (cluster_ctx.clb_nlist.net_sinks(net_id).size() >= SMALL_NET && method == NORMAL) { | |
| get_bb_from_scratch(net_id, &bb_coords[net_id], | |
| &bb_num_on_edges[net_id]); | |
| } | |
| else { | |
| get_non_updateable_bb(net_id, &bb_coords[net_id]); | |
| } | |
| net_cost[net_id] = get_net_cost(net_id, &bb_coords[net_id]); | |
| cost += net_cost[net_id]; | |
| if (method == CHECK) | |
| expected_wirelength += get_net_wirelength_estimate(net_id, &bb_coords[net_id]); | |
| } | |
| } | |
| if (method == CHECK) { | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("BB estimate of min-dist (placement) wire length: %.0f\n", expected_wirelength); | |
| } | |
| return cost; | |
| } | |
| /* Frees the major structures needed by the placer (and not needed * | |
| * elsewhere). */ | |
| static void free_placement_structs(t_placer_opts placer_opts) { | |
| int imacro; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| free_legal_placements(); | |
| free_fast_cost_update(); | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE | |
| || placer_opts.enable_timing_computations) { | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| /*add one to the address since it is indexed from 1 not 0 */ | |
| point_to_point_timing_cost[net_id]++; | |
| free(point_to_point_timing_cost[net_id]); | |
| temp_point_to_point_timing_cost[net_id]++; | |
| free(temp_point_to_point_timing_cost[net_id]); | |
| point_to_point_delay_cost[net_id]++; | |
| free(point_to_point_delay_cost[net_id]); | |
| temp_point_to_point_delay_cost[net_id]++; | |
| free(temp_point_to_point_delay_cost[net_id]); | |
| } | |
| point_to_point_timing_cost.clear(); | |
| point_to_point_delay_cost.clear(); | |
| temp_point_to_point_timing_cost.clear(); | |
| temp_point_to_point_delay_cost.clear(); | |
| net_pin_indices.clear(); | |
| } | |
| free_placement_macros_structs(); | |
| for (imacro = 0; imacro < num_pl_macros; imacro++) | |
| free(pl_macros[imacro].members); | |
| free(pl_macros); | |
| /* Defensive coding. */ | |
| pl_macros = nullptr; | |
| /* Frees up all the data structure used in vpr_utils. */ | |
| free_port_pin_from_blk_pin(); | |
| free_blk_pin_from_port_pin(); | |
| } | |
| /* Allocates the major structures needed only by the placer, primarily for * | |
| * computing costs quickly and such. */ | |
| static void alloc_and_load_placement_structs( | |
| float place_cost_exp, t_placer_opts placer_opts, | |
| t_direct_inf *directs, int num_directs) { | |
| int max_pins_per_clb, i; | |
| unsigned int ipin; | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| size_t num_nets = cluster_ctx.clb_nlist.nets().size(); | |
| init_placement_context(); | |
| alloc_legal_placements(); | |
| load_legal_placements(); | |
| max_pins_per_clb = 0; | |
| for (i = 0; i < device_ctx.num_block_types; i++) { | |
| max_pins_per_clb = max(max_pins_per_clb, device_ctx.block_types[i].num_pins); | |
| } | |
| if (placer_opts.place_algorithm == PATH_TIMING_DRIVEN_PLACE | |
| || placer_opts.enable_timing_computations) { | |
| /* Allocate structures associated with timing driven placement */ | |
| /* [0..cluster_ctx.clb_nlist.nets().size()-1][1..num_pins-1] */ | |
| point_to_point_delay_cost.resize(num_nets); | |
| temp_point_to_point_delay_cost.resize(num_nets); | |
| point_to_point_timing_cost.resize(num_nets); | |
| temp_point_to_point_timing_cost.resize(num_nets); | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| size_t num_sinks = cluster_ctx.clb_nlist.net_sinks(net_id).size(); | |
| /* In the following, subract one so index starts at * | |
| * 1 instead of 0 */ | |
| point_to_point_delay_cost[net_id] = (float *)vtr::malloc(num_sinks * sizeof(float)); | |
| point_to_point_delay_cost[net_id]--; | |
| temp_point_to_point_delay_cost[net_id] = (float *)vtr::malloc(num_sinks * sizeof(float)); | |
| temp_point_to_point_delay_cost[net_id]--; | |
| point_to_point_timing_cost[net_id] = (float *)vtr::malloc(num_sinks * sizeof(float)); | |
| point_to_point_timing_cost[net_id]--; | |
| temp_point_to_point_timing_cost[net_id] = (float *)vtr::malloc(num_sinks * sizeof(float)); | |
| temp_point_to_point_timing_cost[net_id]--; | |
| } | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| for (ipin = 1; ipin < cluster_ctx.clb_nlist.net_pins(net_id).size(); ipin++) { | |
| point_to_point_delay_cost[net_id][ipin] = 0; | |
| temp_point_to_point_delay_cost[net_id][ipin] = 0; | |
| } | |
| } | |
| } | |
| net_cost.resize(num_nets, -1.); | |
| temp_net_cost.resize(num_nets, -1.); | |
| bb_coords.resize(num_nets, t_bb()); | |
| bb_num_on_edges.resize(num_nets, t_bb()); | |
| /* Used to store costs for moves not yet made and to indicate when a net's * | |
| * cost has been recomputed. temp_net_cost[inet] < 0 means net's cost hasn't * | |
| * been recomputed. */ | |
| bb_updated_before.resize(num_nets, NOT_UPDATED_YET); | |
| alloc_and_load_for_fast_cost_update(place_cost_exp); | |
| alloc_and_load_net_pin_indices(); | |
| alloc_and_load_try_swap_structs(); | |
| num_pl_macros = alloc_and_load_placement_macros(directs, num_directs, &pl_macros); | |
| } | |
| /* Allocates and loads net_pin_indices array, this array allows us to quickly * | |
| * find what pin on the net a block pin corresponds to. Returns the pointer * | |
| * to the 2D net_pin_indices array. */ | |
| static void alloc_and_load_net_pin_indices() { | |
| unsigned int netpin; | |
| int itype, max_pins_per_clb = 0; | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| /* Compute required size. */ | |
| for (itype = 0; itype < device_ctx.num_block_types; itype++) | |
| max_pins_per_clb = max(max_pins_per_clb, device_ctx.block_types[itype].num_pins); | |
| /* Allocate for maximum size. */ | |
| net_pin_indices.resize(cluster_ctx.clb_nlist.blocks().size()); | |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) | |
| net_pin_indices[blk_id].resize(max_pins_per_clb); | |
| /* Load the values */ | |
| for (auto net_id : cluster_ctx.clb_nlist.nets()) { | |
| if (cluster_ctx.clb_nlist.net_is_global(net_id)) | |
| continue; | |
| netpin = 0; | |
| for (auto pin_id : cluster_ctx.clb_nlist.net_pins(net_id)) { | |
| int pin_index = cluster_ctx.clb_nlist.pin_physical_index(pin_id); | |
| ClusterBlockId block_id = cluster_ctx.clb_nlist.pin_block(pin_id); | |
| net_pin_indices[block_id][pin_index] = netpin; | |
| netpin++; | |
| } | |
| } | |
| } | |
| static void alloc_and_load_try_swap_structs() { | |
| /* Allocate the local bb_coordinate storage, etc. only once. */ | |
| /* Allocate with size cluster_ctx.clb_nlist.nets().size() for any number of nets affected. */ | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| size_t num_nets = cluster_ctx.clb_nlist.nets().size(); | |
| ts_bb_coord_new.resize(num_nets, t_bb()); | |
| ts_bb_edge_new.resize(num_nets, t_bb()); | |
| ts_nets_to_update.resize(num_nets, ClusterNetId::INVALID()); | |
| /* Allocate with size cluster_ctx.clb_nlist.blocks().size() for any number of moved blocks. */ | |
| blocks_affected.moved_blocks = (t_pl_moved_block*) vtr::calloc((int) cluster_ctx.clb_nlist.blocks().size(), sizeof(t_pl_moved_block)); | |
| blocks_affected.num_moved_blocks = 0; | |
| } | |
| /* This routine finds the bounding box of each net from scratch (i.e. * | |
| * from only the block location information). It updates both the * | |
| * coordinate and number of pins on each edge information. It * | |
| * should only be called when the bounding box information is not valid. */ | |
| static void get_bb_from_scratch(ClusterNetId net_id, t_bb *coords, | |
| t_bb *num_on_edges) { | |
| int pnum, x, y, xmin, xmax, ymin, ymax; | |
| int xmin_edge, xmax_edge, ymin_edge, ymax_edge; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& grid = device_ctx.grid; | |
| ClusterBlockId bnum = cluster_ctx.clb_nlist.net_driver_block(net_id); | |
| pnum = cluster_ctx.clb_nlist.net_pin_physical_index(net_id, 0); | |
| x = place_ctx.block_locs[bnum].x + cluster_ctx.clb_nlist.block_type(bnum)->pin_width_offset[pnum]; | |
| y = place_ctx.block_locs[bnum].y + cluster_ctx.clb_nlist.block_type(bnum)->pin_height_offset[pnum]; | |
| x = max(min<int>(x, grid.width() - 2), 1); | |
| y = max(min<int>(y, grid.height() - 2), 1); | |
| xmin = x; | |
| ymin = y; | |
| xmax = x; | |
| ymax = y; | |
| xmin_edge = 1; | |
| ymin_edge = 1; | |
| xmax_edge = 1; | |
| ymax_edge = 1; | |
| for (auto pin_id : cluster_ctx.clb_nlist.net_sinks(net_id)) { | |
| bnum = cluster_ctx.clb_nlist.pin_block(pin_id); | |
| pnum = cluster_ctx.clb_nlist.pin_physical_index(pin_id); | |
| x = place_ctx.block_locs[bnum].x + cluster_ctx.clb_nlist.block_type(bnum)->pin_width_offset[pnum]; | |
| y = place_ctx.block_locs[bnum].y + cluster_ctx.clb_nlist.block_type(bnum)->pin_height_offset[pnum]; | |
| /* Code below counts IO blocks as being within the 1..grid.width()-2, 1..grid.height()-2 clb array. * | |
| * This is because channels do not go out of the 0..grid.width()-2, 0..grid.height()-2 range, and * | |
| * I always take all channels impinging on the bounding box to be within * | |
| * that bounding box. Hence, this "movement" of IO blocks does not affect * | |
| * the which channels are included within the bounding box, and it * | |
| * simplifies the code a lot. */ | |
| x = max(min<int>(x, grid.width() - 2), 1); //-2 for no perim channels | |
| y = max(min<int>(y, grid.height() - 2), 1); //-2 for no perim channels | |
| if (x == xmin) { | |
| xmin_edge++; | |
| } | |
| if (x == xmax) { /* Recall that xmin could equal xmax -- don't use else */ | |
| xmax_edge++; | |
| } | |
| else if (x < xmin) { | |
| xmin = x; | |
| xmin_edge = 1; | |
| } | |
| else if (x > xmax) { | |
| xmax = x; | |
| xmax_edge = 1; | |
| } | |
| if (y == ymin) { | |
| ymin_edge++; | |
| } | |
| if (y == ymax) { | |
| ymax_edge++; | |
| } | |
| else if (y < ymin) { | |
| ymin = y; | |
| ymin_edge = 1; | |
| } | |
| else if (y > ymax) { | |
| ymax = y; | |
| ymax_edge = 1; | |
| } | |
| } | |
| /* Copy the coordinates and number on edges information into the proper * | |
| * structures. */ | |
| coords->xmin = xmin; | |
| coords->xmax = xmax; | |
| coords->ymin = ymin; | |
| coords->ymax = ymax; | |
| num_on_edges->xmin = xmin_edge; | |
| num_on_edges->xmax = xmax_edge; | |
| num_on_edges->ymin = ymin_edge; | |
| num_on_edges->ymax = ymax_edge; | |
| } | |
| static double get_net_wirelength_estimate(ClusterNetId net_id, t_bb *bbptr) { | |
| /* WMF: Finds the estimate of wirelength due to one net by looking at * | |
| * its coordinate bounding box. */ | |
| double ncost, crossing; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| /* Get the expected "crossing count" of a net, based on its number * | |
| * of pins. Extrapolate for very large nets. */ | |
| if (((cluster_ctx.clb_nlist.net_pins(net_id).size()) > 50) | |
| && ((cluster_ctx.clb_nlist.net_pins(net_id).size()) < 85)) { | |
| crossing = 2.7933 + 0.02616 * ((cluster_ctx.clb_nlist.net_pins(net_id).size()) - 50); | |
| } else if ((cluster_ctx.clb_nlist.net_pins(net_id).size()) >= 85) { | |
| crossing = 2.7933 + 0.011 * (cluster_ctx.clb_nlist.net_pins(net_id).size()) | |
| - 0.0000018 * (cluster_ctx.clb_nlist.net_pins(net_id).size()) | |
| * (cluster_ctx.clb_nlist.net_pins(net_id).size()); | |
| } else { | |
| crossing = cross_count[cluster_ctx.clb_nlist.net_pins(net_id).size() - 1]; | |
| } | |
| /* Could insert a check for xmin == xmax. In that case, assume * | |
| * connection will be made with no bends and hence no x-cost. * | |
| * Same thing for y-cost. */ | |
| /* Cost = wire length along channel * cross_count / average * | |
| * channel capacity. Do this for x, then y direction and add. */ | |
| ncost = (bbptr->xmax - bbptr->xmin + 1) * crossing; | |
| ncost += (bbptr->ymax - bbptr->ymin + 1) * crossing; | |
| return (ncost); | |
| } | |
| static float get_net_cost(ClusterNetId net_id, t_bb *bbptr) { | |
| /* Finds the cost due to one net by looking at its coordinate bounding * | |
| * box. */ | |
| float ncost, crossing; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| /* Get the expected "crossing count" of a net, based on its number * | |
| * of pins. Extrapolate for very large nets. */ | |
| if ((cluster_ctx.clb_nlist.net_pins(net_id).size()) > 50) { | |
| crossing = 2.7933 + 0.02616 * ((cluster_ctx.clb_nlist.net_pins(net_id).size()) - 50); | |
| /* crossing = 3.0; Old value */ | |
| } else { | |
| crossing = cross_count[(cluster_ctx.clb_nlist.net_pins(net_id).size()) - 1]; | |
| } | |
| /* Could insert a check for xmin == xmax. In that case, assume * | |
| * connection will be made with no bends and hence no x-cost. * | |
| * Same thing for y-cost. */ | |
| /* Cost = wire length along channel * cross_count / average * | |
| * channel capacity. Do this for x, then y direction and add. */ | |
| ncost = (bbptr->xmax - bbptr->xmin + 1) * crossing | |
| * chanx_place_cost_fac[bbptr->ymax][bbptr->ymin - 1]; | |
| ncost += (bbptr->ymax - bbptr->ymin + 1) * crossing | |
| * chany_place_cost_fac[bbptr->xmax][bbptr->xmin - 1]; | |
| return (ncost); | |
| } | |
| /* Finds the bounding box of a net and stores its coordinates in the * | |
| * bb_coord_new data structure. This routine should only be called * | |
| * for small nets, since it does not determine enough information for * | |
| * the bounding box to be updated incrementally later. * | |
| * Currently assumes channels on both sides of the CLBs forming the * | |
| * edges of the bounding box can be used. Essentially, I am assuming * | |
| * the pins always lie on the outside of the bounding box. */ | |
| static void get_non_updateable_bb(ClusterNetId net_id, t_bb *bb_coord_new) { | |
| //TODO: account for multiple physical pin instances per logical pin | |
| int xmax, ymax, xmin, ymin, x, y; | |
| int pnum; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| ClusterBlockId bnum = cluster_ctx.clb_nlist.net_driver_block(net_id); | |
| pnum = cluster_ctx.clb_nlist.net_pin_physical_index(net_id, 0); | |
| x = place_ctx.block_locs[bnum].x + cluster_ctx.clb_nlist.block_type(bnum)->pin_width_offset[pnum]; | |
| y = place_ctx.block_locs[bnum].y + cluster_ctx.clb_nlist.block_type(bnum)->pin_height_offset[pnum]; | |
| xmin = x; | |
| ymin = y; | |
| xmax = x; | |
| ymax = y; | |
| for (auto pin_id : cluster_ctx.clb_nlist.net_sinks(net_id)) { | |
| bnum = cluster_ctx.clb_nlist.pin_block(pin_id); | |
| pnum = cluster_ctx.clb_nlist.pin_physical_index(pin_id); | |
| x = place_ctx.block_locs[bnum].x + cluster_ctx.clb_nlist.block_type(bnum)->pin_width_offset[pnum]; | |
| y = place_ctx.block_locs[bnum].y + cluster_ctx.clb_nlist.block_type(bnum)->pin_height_offset[pnum]; | |
| if (x < xmin) { | |
| xmin = x; | |
| } else if (x > xmax) { | |
| xmax = x; | |
| } | |
| if (y < ymin) { | |
| ymin = y; | |
| } else if (y > ymax) { | |
| ymax = y; | |
| } | |
| } | |
| /* Now I've found the coordinates of the bounding box. There are no * | |
| * channels beyond device_ctx.grid.width()-2 and * | |
| * device_ctx.grid.height() - 2, so I want to clip to that. As well,* | |
| * since I'll always include the channel immediately below and the * | |
| * channel immediately to the left of the bounding box, I want to * | |
| * clip to 1 in both directions as well (since minimum channel index * | |
| * is 0). See route_common.cpp for a channel diagram. */ | |
| bb_coord_new->xmin = max(min<int>(xmin, device_ctx.grid.width() - 2), 1); //-2 for no perim channels | |
| bb_coord_new->ymin = max(min<int>(ymin, device_ctx.grid.height() - 2), 1); //-2 for no perim channels | |
| bb_coord_new->xmax = max(min<int>(xmax, device_ctx.grid.width() - 2), 1); //-2 for no perim channels | |
| bb_coord_new->ymax = max(min<int>(ymax, device_ctx.grid.height() - 2), 1); //-2 for no perim channels | |
| } | |
| static void update_bb(ClusterNetId net_id, t_bb *bb_coord_new, | |
| t_bb *bb_edge_new, int xold, int yold, int xnew, int ynew) { | |
| /* Updates the bounding box of a net by storing its coordinates in * | |
| * the bb_coord_new data structure and the number of blocks on each * | |
| * edge in the bb_edge_new data structure. This routine should only * | |
| * be called for large nets, since it has some overhead relative to * | |
| * just doing a brute force bounding box calculation. The bounding * | |
| * box coordinate and edge information for inet must be valid before * | |
| * this routine is called. * | |
| * Currently assumes channels on both sides of the CLBs forming the * | |
| * edges of the bounding box can be used. Essentially, I am assuming * | |
| * the pins always lie on the outside of the bounding box. * | |
| * The x and y coordinates are the pin's x and y coordinates. */ | |
| /* IO blocks are considered to be one cell in for simplicity. */ | |
| //TODO: account for multiple physical pin instances per logical pin | |
| t_bb *curr_bb_edge, *curr_bb_coord; | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| xnew = max(min<int>(xnew, device_ctx.grid.width() - 2), 1); //-2 for no perim channels | |
| ynew = max(min<int>(ynew, device_ctx.grid.height() - 2), 1); //-2 for no perim channels | |
| xold = max(min<int>(xold, device_ctx.grid.width() - 2), 1); //-2 for no perim channels | |
| yold = max(min<int>(yold, device_ctx.grid.height() - 2), 1); //-2 for no perim channels | |
| /* Check if the net had been updated before. */ | |
| if (bb_updated_before[net_id] == GOT_FROM_SCRATCH) { | |
| /* The net had been updated from scratch, DO NOT update again! */ | |
| return; | |
| } else if (bb_updated_before[net_id] == NOT_UPDATED_YET) { | |
| /* The net had NOT been updated before, could use the old values */ | |
| curr_bb_coord = &bb_coords[net_id]; | |
| curr_bb_edge = &bb_num_on_edges[net_id]; | |
| bb_updated_before[net_id] = UPDATED_ONCE; | |
| } else { | |
| /* The net had been updated before, must use the new values */ | |
| curr_bb_coord = bb_coord_new; | |
| curr_bb_edge = bb_edge_new; | |
| } | |
| /* Check if I can update the bounding box incrementally. */ | |
| if (xnew < xold) { /* Move to left. */ | |
| /* Update the xmax fields for coordinates and number of edges first. */ | |
| if (xold == curr_bb_coord->xmax) { /* Old position at xmax. */ | |
| if (curr_bb_edge->xmax == 1) { | |
| get_bb_from_scratch(net_id, bb_coord_new, bb_edge_new); | |
| bb_updated_before[net_id] = GOT_FROM_SCRATCH; | |
| return; | |
| } else { | |
| bb_edge_new->xmax = curr_bb_edge->xmax - 1; | |
| bb_coord_new->xmax = curr_bb_coord->xmax; | |
| } | |
| } else { /* Move to left, old postion was not at xmax. */ | |
| bb_coord_new->xmax = curr_bb_coord->xmax; | |
| bb_edge_new->xmax = curr_bb_edge->xmax; | |
| } | |
| /* Now do the xmin fields for coordinates and number of edges. */ | |
| if (xnew < curr_bb_coord->xmin) { /* Moved past xmin */ | |
| bb_coord_new->xmin = xnew; | |
| bb_edge_new->xmin = 1; | |
| } else if (xnew == curr_bb_coord->xmin) { /* Moved to xmin */ | |
| bb_coord_new->xmin = xnew; | |
| bb_edge_new->xmin = curr_bb_edge->xmin + 1; | |
| } else { /* Xmin unchanged. */ | |
| bb_coord_new->xmin = curr_bb_coord->xmin; | |
| bb_edge_new->xmin = curr_bb_edge->xmin; | |
| } | |
| /* End of move to left case. */ | |
| } else if (xnew > xold) { /* Move to right. */ | |
| /* Update the xmin fields for coordinates and number of edges first. */ | |
| if (xold == curr_bb_coord->xmin) { /* Old position at xmin. */ | |
| if (curr_bb_edge->xmin == 1) { | |
| get_bb_from_scratch(net_id, bb_coord_new, bb_edge_new); | |
| bb_updated_before[net_id] = GOT_FROM_SCRATCH; | |
| return; | |
| } else { | |
| bb_edge_new->xmin = curr_bb_edge->xmin - 1; | |
| bb_coord_new->xmin = curr_bb_coord->xmin; | |
| } | |
| } else { /* Move to right, old position was not at xmin. */ | |
| bb_coord_new->xmin = curr_bb_coord->xmin; | |
| bb_edge_new->xmin = curr_bb_edge->xmin; | |
| } | |
| /* Now do the xmax fields for coordinates and number of edges. */ | |
| if (xnew > curr_bb_coord->xmax) { /* Moved past xmax. */ | |
| bb_coord_new->xmax = xnew; | |
| bb_edge_new->xmax = 1; | |
| } else if (xnew == curr_bb_coord->xmax) { /* Moved to xmax */ | |
| bb_coord_new->xmax = xnew; | |
| bb_edge_new->xmax = curr_bb_edge->xmax + 1; | |
| } else { /* Xmax unchanged. */ | |
| bb_coord_new->xmax = curr_bb_coord->xmax; | |
| bb_edge_new->xmax = curr_bb_edge->xmax; | |
| } | |
| /* End of move to right case. */ | |
| } else { /* xnew == xold -- no x motion. */ | |
| bb_coord_new->xmin = curr_bb_coord->xmin; | |
| bb_coord_new->xmax = curr_bb_coord->xmax; | |
| bb_edge_new->xmin = curr_bb_edge->xmin; | |
| bb_edge_new->xmax = curr_bb_edge->xmax; | |
| } | |
| /* Now account for the y-direction motion. */ | |
| if (ynew < yold) { /* Move down. */ | |
| /* Update the ymax fields for coordinates and number of edges first. */ | |
| if (yold == curr_bb_coord->ymax) { /* Old position at ymax. */ | |
| if (curr_bb_edge->ymax == 1) { | |
| get_bb_from_scratch(net_id, bb_coord_new, bb_edge_new); | |
| bb_updated_before[net_id] = GOT_FROM_SCRATCH; | |
| return; | |
| } else { | |
| bb_edge_new->ymax = curr_bb_edge->ymax - 1; | |
| bb_coord_new->ymax = curr_bb_coord->ymax; | |
| } | |
| } else { /* Move down, old postion was not at ymax. */ | |
| bb_coord_new->ymax = curr_bb_coord->ymax; | |
| bb_edge_new->ymax = curr_bb_edge->ymax; | |
| } | |
| /* Now do the ymin fields for coordinates and number of edges. */ | |
| if (ynew < curr_bb_coord->ymin) { /* Moved past ymin */ | |
| bb_coord_new->ymin = ynew; | |
| bb_edge_new->ymin = 1; | |
| } else if (ynew == curr_bb_coord->ymin) { /* Moved to ymin */ | |
| bb_coord_new->ymin = ynew; | |
| bb_edge_new->ymin = curr_bb_edge->ymin + 1; | |
| } else { /* ymin unchanged. */ | |
| bb_coord_new->ymin = curr_bb_coord->ymin; | |
| bb_edge_new->ymin = curr_bb_edge->ymin; | |
| } | |
| /* End of move down case. */ | |
| } else if (ynew > yold) { /* Moved up. */ | |
| /* Update the ymin fields for coordinates and number of edges first. */ | |
| if (yold == curr_bb_coord->ymin) { /* Old position at ymin. */ | |
| if (curr_bb_edge->ymin == 1) { | |
| get_bb_from_scratch(net_id, bb_coord_new, bb_edge_new); | |
| bb_updated_before[net_id] = GOT_FROM_SCRATCH; | |
| return; | |
| } else { | |
| bb_edge_new->ymin = curr_bb_edge->ymin - 1; | |
| bb_coord_new->ymin = curr_bb_coord->ymin; | |
| } | |
| } else { /* Moved up, old position was not at ymin. */ | |
| bb_coord_new->ymin = curr_bb_coord->ymin; | |
| bb_edge_new->ymin = curr_bb_edge->ymin; | |
| } | |
| /* Now do the ymax fields for coordinates and number of edges. */ | |
| if (ynew > curr_bb_coord->ymax) { /* Moved past ymax. */ | |
| bb_coord_new->ymax = ynew; | |
| bb_edge_new->ymax = 1; | |
| } else if (ynew == curr_bb_coord->ymax) { /* Moved to ymax */ | |
| bb_coord_new->ymax = ynew; | |
| bb_edge_new->ymax = curr_bb_edge->ymax + 1; | |
| } else { /* ymax unchanged. */ | |
| bb_coord_new->ymax = curr_bb_coord->ymax; | |
| bb_edge_new->ymax = curr_bb_edge->ymax; | |
| } | |
| /* End of move up case. */ | |
| } else { /* ynew == yold -- no y motion. */ | |
| bb_coord_new->ymin = curr_bb_coord->ymin; | |
| bb_coord_new->ymax = curr_bb_coord->ymax; | |
| bb_edge_new->ymin = curr_bb_edge->ymin; | |
| bb_edge_new->ymax = curr_bb_edge->ymax; | |
| } | |
| if (bb_updated_before[net_id] == NOT_UPDATED_YET) { | |
| bb_updated_before[net_id] = UPDATED_ONCE; | |
| } | |
| } | |
| static void alloc_legal_placements() { | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| legal_pos = (t_legal_pos **) vtr::malloc(device_ctx.num_block_types * sizeof(t_legal_pos *)); | |
| num_legal_pos = (int *) vtr::calloc(device_ctx.num_block_types, sizeof(int)); | |
| /* Initialize all occupancy to zero. */ | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) { | |
| for (size_t j = 0; j < device_ctx.grid.height(); j++) { | |
| place_ctx.grid_blocks[i][j].usage = 0; | |
| for (int k = 0; k < device_ctx.grid[i][j].type->capacity; k++) { | |
| if (place_ctx.grid_blocks[i][j].blocks[k] != INVALID_BLOCK_ID) { | |
| place_ctx.grid_blocks[i][j].blocks[k] = EMPTY_BLOCK_ID; | |
| if (device_ctx.grid[i][j].width_offset == 0 && device_ctx.grid[i][j].height_offset == 0) { | |
| num_legal_pos[device_ctx.grid[i][j].type->index]++; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| for (int i = 0; i < device_ctx.num_block_types; i++) { | |
| legal_pos[i] = (t_legal_pos *) vtr::malloc(num_legal_pos[i] * sizeof(t_legal_pos)); | |
| } | |
| } | |
| static void load_legal_placements() { | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| int* index = (int *) vtr::calloc(device_ctx.num_block_types, sizeof(int)); | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) { | |
| for (size_t j = 0; j < device_ctx.grid.height(); j++) { | |
| for (int k = 0; k < device_ctx.grid[i][j].type->capacity; k++) { | |
| if (place_ctx.grid_blocks[i][j].blocks[k] == INVALID_BLOCK_ID) { | |
| continue; | |
| } | |
| if (device_ctx.grid[i][j].width_offset == 0 && device_ctx.grid[i][j].height_offset == 0) { | |
| int itype = device_ctx.grid[i][j].type->index; | |
| legal_pos[itype][index[itype]].x = i; | |
| legal_pos[itype][index[itype]].y = j; | |
| legal_pos[itype][index[itype]].z = k; | |
| index[itype]++; | |
| } | |
| } | |
| } | |
| } | |
| free(index); | |
| } | |
| static void free_legal_placements() { | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| for (int i = 0; i < device_ctx.num_block_types; i++) { | |
| free(legal_pos[i]); | |
| } | |
| free(legal_pos); /* Free the mapping list */ | |
| free(num_legal_pos); | |
| } | |
| static int check_macro_can_be_placed(int imacro, int itype, int x, int y, int z) { | |
| int imember; | |
| size_t member_x, member_y, member_z; | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| // Every macro can be placed until proven otherwise | |
| int macro_can_be_placed = true; | |
| // Check whether all the members can be placed | |
| for (imember = 0; imember < pl_macros[imacro].num_blocks; imember++) { | |
| member_x = x + pl_macros[imacro].members[imember].x_offset; | |
| member_y = y + pl_macros[imacro].members[imember].y_offset; | |
| member_z = z + pl_macros[imacro].members[imember].z_offset; | |
| // Check whether the location could accept block of this type | |
| // Then check whether the location could still accomodate more blocks | |
| // Also check whether the member position is valid, that is the member's location | |
| // still within the chip's dimemsion and the member_z is allowed at that location on the grid | |
| if (member_x < device_ctx.grid.width() && member_y < device_ctx.grid.height() | |
| && device_ctx.grid[member_x][member_y].type->index == itype | |
| && place_ctx.grid_blocks[member_x][member_y].blocks[member_z] == EMPTY_BLOCK_ID) { | |
| // Can still accomodate blocks here, check the next position | |
| continue; | |
| } else { | |
| // Cant be placed here - skip to the next try | |
| macro_can_be_placed = false; | |
| break; | |
| } | |
| } | |
| return (macro_can_be_placed); | |
| } | |
| static int try_place_macro(int itype, int ipos, int imacro){ | |
| int x, y, z, member_x, member_y, member_z, imember; | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| int macro_placed = false; | |
| // Choose a random position for the head | |
| x = legal_pos[itype][ipos].x; | |
| y = legal_pos[itype][ipos].y; | |
| z = legal_pos[itype][ipos].z; | |
| // If that location is occupied, do nothing. | |
| if (place_ctx.grid_blocks[x][y].blocks[z] != EMPTY_BLOCK_ID) { | |
| return (macro_placed); | |
| } | |
| int macro_can_be_placed = check_macro_can_be_placed(imacro, itype, x, y, z); | |
| if (macro_can_be_placed) { | |
| // Place down the macro | |
| macro_placed = true; | |
| for (imember = 0; imember < pl_macros[imacro].num_blocks; imember++) { | |
| member_x = x + pl_macros[imacro].members[imember].x_offset; | |
| member_y = y + pl_macros[imacro].members[imember].y_offset; | |
| member_z = z + pl_macros[imacro].members[imember].z_offset; | |
| ClusterBlockId iblk = pl_macros[imacro].members[imember].blk_index; | |
| place_ctx.block_locs[iblk].x = member_x; | |
| place_ctx.block_locs[iblk].y = member_y; | |
| place_ctx.block_locs[iblk].z = member_z; | |
| place_ctx.grid_blocks[member_x][member_y].blocks[member_z] = pl_macros[imacro].members[imember].blk_index; | |
| place_ctx.grid_blocks[member_x][member_y].usage++; | |
| // Could not ensure that the randomiser would not pick this location again | |
| // So, would have to do a lazy removal - whenever I come across a block that could not be placed, | |
| // go ahead and remove it from the legal_pos[][] array | |
| } // Finish placing all the members in the macro | |
| } // End of this choice of legal_pos | |
| return (macro_placed); | |
| } | |
| static void initial_placement_pl_macros(int macros_max_num_tries, int * free_locations) { | |
| int macro_placed; | |
| int imacro, itype, itry, ipos; | |
| ClusterBlockId blk_id; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| /* Macros are harder to place. Do them first */ | |
| for (imacro = 0; imacro < num_pl_macros; imacro++) { | |
| // Every macro are not placed in the beginnning | |
| macro_placed = false; | |
| // Assume that all the blocks in the macro are of the same type | |
| blk_id = pl_macros[imacro].members[0].blk_index; | |
| itype = cluster_ctx.clb_nlist.block_type(blk_id)->index; | |
| if (free_locations[itype] < pl_macros[imacro].num_blocks) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "Initial placement failed.\n" | |
| "Could not place macro length %d with head block %s (#%zu); not enough free locations of type %s (#%d).\n" | |
| "VPR cannot auto-size for your circuit, please resize the FPGA manually.\n", | |
| pl_macros[imacro].num_blocks, cluster_ctx.clb_nlist.block_name(blk_id).c_str(), size_t(blk_id), device_ctx.block_types[itype].name, itype); | |
| } | |
| // Try to place the macro first, if can be placed - place them, otherwise try again | |
| for (itry = 0; itry < macros_max_num_tries && macro_placed == false; itry++) { | |
| // Choose a random position for the head | |
| ipos = vtr::irand(free_locations[itype] - 1); | |
| // Try to place the macro | |
| macro_placed = try_place_macro(itype, ipos, imacro); | |
| } // Finished all tries | |
| if (macro_placed == false){ | |
| // if a macro still could not be placed after macros_max_num_tries times, | |
| // go through the chip exhaustively to find a legal placement for the macro | |
| // place the macro on the first location that is legal | |
| // then set macro_placed = true; | |
| // if there are no legal positions, error out | |
| // Exhaustive placement of carry macros | |
| for (ipos = 0; ipos < free_locations[itype] && macro_placed == false; ipos++) { | |
| // Try to place the macro | |
| macro_placed = try_place_macro(itype, ipos, imacro); | |
| } // Exhausted all the legal placement position for this macro | |
| // If macro could not be placed after exhaustive placement, error out | |
| if (macro_placed == false) { | |
| // Error out | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "Initial placement failed.\n" | |
| "Could not place macro length %d with head block %s (#%zu); not enough free locations of type %s (#%d).\n" | |
| "Please manually size the FPGA because VPR can't do this yet.\n", | |
| pl_macros[imacro].num_blocks, cluster_ctx.clb_nlist.block_name(blk_id).c_str(), size_t(blk_id), device_ctx.block_types[itype].name, itype); | |
| } | |
| } else { | |
| // This macro has been placed successfully, proceed to place the next macro | |
| continue; | |
| } | |
| } // Finish placing all the pl_macros successfully | |
| } | |
| /* Place blocks that are NOT a part of any macro. | |
| * We'll randomly place each block in the clustered netlist, one by one. */ | |
| static void initial_placement_blocks(int * free_locations, enum e_pad_loc_type pad_loc_type) { | |
| int itype, ipos, x, y, z; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) { | |
| if (place_ctx.block_locs[blk_id].x != -1) { // -1 is a sentinel for an empty block | |
| // block placed. | |
| continue; | |
| } | |
| /* Don't do IOs if the user specifies IOs; we'll read those locations later. */ | |
| if (!(is_io_type(cluster_ctx.clb_nlist.block_type(blk_id)) && pad_loc_type == USER)) { | |
| /* Randomly select a free location of the appropriate type for blk_id. | |
| * We have a linearized list of all the free locations that can | |
| * accomodate a block of that type in free_locations[itype]. | |
| * Choose one randomly and put blk_id there. Then we don't want to pick | |
| * that location again, so remove it from the free_locations array. | |
| */ | |
| itype = cluster_ctx.clb_nlist.block_type(blk_id)->index; | |
| if (free_locations[itype] <= 0) { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "Initial placement failed.\n" | |
| "Could not place block %s (#%zu); no free locations of type %s (#%d).\n", | |
| cluster_ctx.clb_nlist.block_name(blk_id).c_str(), size_t(blk_id), device_ctx.block_types[itype].name, itype); | |
| } | |
| initial_placement_location(free_locations, blk_id, &ipos, &x, &y, &z); | |
| // Make sure that the position is EMPTY_BLOCK before placing the block down | |
| VTR_ASSERT(place_ctx.grid_blocks[x][y].blocks[z] == EMPTY_BLOCK_ID); | |
| place_ctx.grid_blocks[x][y].blocks[z] = blk_id; | |
| place_ctx.grid_blocks[x][y].usage++; | |
| place_ctx.block_locs[blk_id].x = x; | |
| place_ctx.block_locs[blk_id].y = y; | |
| place_ctx.block_locs[blk_id].z = z; | |
| //Mark IOs as fixed if specifying a (fixed) random placement | |
| if(is_io_type(cluster_ctx.clb_nlist.block_type(blk_id)) && pad_loc_type == RANDOM) { | |
| place_ctx.block_locs[blk_id].is_fixed = true; | |
| } | |
| /* Ensure randomizer doesn't pick this location again, since it's occupied. Could shift all the | |
| * legal positions in legal_pos to remove the entry (choice) we just used, but faster to | |
| * just move the last entry in legal_pos to the spot we just used and decrement the | |
| * count of free_locations. */ | |
| legal_pos[itype][ipos] = legal_pos[itype][free_locations[itype] - 1]; /* overwrite used block position */ | |
| free_locations[itype]--; | |
| } | |
| } | |
| } | |
| static void initial_placement_location(int * free_locations, ClusterBlockId blk_id, | |
| int *pipos, int *px_to, int *py_to, int *pz_to) { | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| int itype = cluster_ctx.clb_nlist.block_type(blk_id)->index; | |
| *pipos = vtr::irand(free_locations[itype] - 1); | |
| *px_to = legal_pos[itype][*pipos].x; | |
| *py_to = legal_pos[itype][*pipos].y; | |
| *pz_to = legal_pos[itype][*pipos].z; | |
| } | |
| static void initial_placement(enum e_pad_loc_type pad_loc_type, | |
| const char *pad_loc_file) { | |
| /* Randomly places the blocks to create an initial placement. We rely on | |
| * the legal_pos array already being loaded. That legal_pos[itype] is an | |
| * array that gives every legal value of (x,y,z) that can accomodate a block. | |
| * The number of such locations is given by num_legal_pos[itype]. | |
| */ | |
| int itype, x, y, z, ipos; | |
| int *free_locations; /* [0..device_ctx.num_block_types-1]. | |
| * Stores how many locations there are for this type that *might* still be free. | |
| * That is, this stores the number of entries in legal_pos[itype] that are worth considering | |
| * as you look for a free location. | |
| */ | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.mutable_placement(); | |
| free_locations = (int *) vtr::malloc(device_ctx.num_block_types * sizeof(int)); | |
| for (itype = 0; itype < device_ctx.num_block_types; itype++) { | |
| free_locations[itype] = num_legal_pos[itype]; | |
| } | |
| /* We'll use the grid to record where everything goes. Initialize to the grid has no | |
| * blocks placed anywhere. | |
| */ | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) { | |
| for (size_t j = 0; j < device_ctx.grid.height(); j++) { | |
| place_ctx.grid_blocks[i][j].usage = 0; | |
| itype = device_ctx.grid[i][j].type->index; | |
| for (int k = 0; k < device_ctx.block_types[itype].capacity; k++) { | |
| if (place_ctx.grid_blocks[i][j].blocks[k] != INVALID_BLOCK_ID) { | |
| place_ctx.grid_blocks[i][j].blocks[k] = EMPTY_BLOCK_ID; | |
| } | |
| } | |
| } | |
| } | |
| /* Similarly, mark all blocks as not being placed yet. */ | |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) { | |
| place_ctx.block_locs[blk_id].x = OPEN; | |
| place_ctx.block_locs[blk_id].y = OPEN; | |
| place_ctx.block_locs[blk_id].z = OPEN; | |
| } | |
| initial_placement_pl_macros(MAX_NUM_TRIES_TO_PLACE_MACROS_RANDOMLY, free_locations); | |
| // All the macros are placed, update the legal_pos[][] array | |
| for (itype = 0; itype < device_ctx.num_block_types; itype++) { | |
| VTR_ASSERT(free_locations[itype] >= 0); | |
| for (ipos = 0; ipos < free_locations[itype]; ipos++) { | |
| x = legal_pos[itype][ipos].x; | |
| y = legal_pos[itype][ipos].y; | |
| z = legal_pos[itype][ipos].z; | |
| // Check if that location is occupied. If it is, remove from legal_pos | |
| if (place_ctx.grid_blocks[x][y].blocks[z] != EMPTY_BLOCK_ID && place_ctx.grid_blocks[x][y].blocks[z] != INVALID_BLOCK_ID) { | |
| legal_pos[itype][ipos] = legal_pos[itype][free_locations[itype] - 1]; | |
| free_locations[itype]--; | |
| // After the move, I need to check this particular entry again | |
| ipos--; | |
| continue; | |
| } | |
| } | |
| } // Finish updating the legal_pos[][] and free_locations[] array | |
| initial_placement_blocks(free_locations, pad_loc_type); | |
| if (pad_loc_type == USER) { | |
| read_user_pad_loc(pad_loc_file); | |
| } | |
| /* Restore legal_pos */ | |
| load_legal_placements(); | |
| #ifdef VERBOSE | |
| vtr::printf_info("At end of initial_placement.\n"); | |
| if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_INITIAL_CLB_PLACEMENT)) { | |
| print_clb_placement(getEchoFileName(E_ECHO_INITIAL_CLB_PLACEMENT)); | |
| } | |
| #endif | |
| free(free_locations); | |
| } | |
| static void free_fast_cost_update() { | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| for (size_t i = 0; i < device_ctx.grid.height(); i++) { | |
| free(chanx_place_cost_fac[i]); | |
| } | |
| free(chanx_place_cost_fac); | |
| chanx_place_cost_fac = nullptr; | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) { | |
| free(chany_place_cost_fac[i]); | |
| } | |
| free(chany_place_cost_fac); | |
| chany_place_cost_fac = nullptr; | |
| } | |
| static void alloc_and_load_for_fast_cost_update(float place_cost_exp) { | |
| /* Allocates and loads the chanx_place_cost_fac and chany_place_cost_fac * | |
| * arrays with the inverse of the average number of tracks per channel * | |
| * between [subhigh] and [sublow]. This is only useful for the cost * | |
| * function that takes the length of the net bounding box in each * | |
| * dimension divided by the average number of tracks in that direction. * | |
| * For other cost functions, you don't have to bother calling this * | |
| * routine; when using the cost function described above, however, you * | |
| * must always call this routine after you call init_chan and before * | |
| * you do any placement cost determination. The place_cost_exp factor * | |
| * specifies to what power the width of the channel should be taken -- * | |
| * larger numbers make narrower channels more expensive. */ | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| /* Access arrays below as chan?_place_cost_fac[subhigh][sublow]. Since * | |
| * subhigh must be greater than or equal to sublow, we only need to * | |
| * allocate storage for the lower half of a matrix. */ | |
| chanx_place_cost_fac = (float **) vtr::malloc((device_ctx.grid.height()) * sizeof(float *)); | |
| for (size_t i = 0; i < device_ctx.grid.height(); i++) | |
| chanx_place_cost_fac[i] = (float *) vtr::malloc((i + 1) * sizeof(float)); | |
| chany_place_cost_fac = (float **) vtr::malloc((device_ctx.grid.width() + 1) * sizeof(float *)); | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) | |
| chany_place_cost_fac[i] = (float *) vtr::malloc((i + 1) * sizeof(float)); | |
| /* First compute the number of tracks between channel high and channel * | |
| * low, inclusive, in an efficient manner. */ | |
| chanx_place_cost_fac[0][0] = device_ctx.chan_width.x_list[0]; | |
| for (size_t high = 1; high < device_ctx.grid.height(); high++) { | |
| chanx_place_cost_fac[high][high] = device_ctx.chan_width.x_list[high]; | |
| for (size_t low = 0; low < high; low++) { | |
| chanx_place_cost_fac[high][low] = | |
| chanx_place_cost_fac[high - 1][low] + device_ctx.chan_width.x_list[high]; | |
| } | |
| } | |
| /* Now compute the inverse of the average number of tracks per channel * | |
| * between high and low. The cost function divides by the average * | |
| * number of tracks per channel, so by storing the inverse I convert * | |
| * this to a faster multiplication. Take this final number to the * | |
| * place_cost_exp power -- numbers other than one mean this is no * | |
| * longer a simple "average number of tracks"; it is some power of * | |
| * that, allowing greater penalization of narrow channels. */ | |
| for (size_t high = 0; high < device_ctx.grid.height(); high++) | |
| for (size_t low = 0; low <= high; low++) { | |
| chanx_place_cost_fac[high][low] = (high - low + 1.) | |
| / chanx_place_cost_fac[high][low]; | |
| chanx_place_cost_fac[high][low] = pow( | |
| (double) chanx_place_cost_fac[high][low], | |
| (double) place_cost_exp); | |
| } | |
| /* Now do the same thing for the y-directed channels. First get the * | |
| * number of tracks between channel high and channel low, inclusive. */ | |
| chany_place_cost_fac[0][0] = device_ctx.chan_width.y_list[0]; | |
| for (size_t high = 1; high < device_ctx.grid.width(); high++) { | |
| chany_place_cost_fac[high][high] = device_ctx.chan_width.y_list[high]; | |
| for (size_t low = 0; low < high; low++) { | |
| chany_place_cost_fac[high][low] = | |
| chany_place_cost_fac[high - 1][low] + device_ctx.chan_width.y_list[high]; | |
| } | |
| } | |
| /* Now compute the inverse of the average number of tracks per channel * | |
| * between high and low. Take to specified power. */ | |
| for (size_t high = 0; high < device_ctx.grid.width(); high++) | |
| for (size_t low = 0; low <= high; low++) { | |
| chany_place_cost_fac[high][low] = (high - low + 1.) | |
| / chany_place_cost_fac[high][low]; | |
| chany_place_cost_fac[high][low] = pow( | |
| (double) chany_place_cost_fac[high][low], | |
| (double) place_cost_exp); | |
| } | |
| } | |
| static void check_place(float bb_cost, float timing_cost, | |
| enum e_place_algorithm place_algorithm, | |
| float delay_cost) { | |
| /* Checks that the placement has not confused our data structures. * | |
| * i.e. the clb and block structures agree about the locations of * | |
| * every block, blocks are in legal spots, etc. Also recomputes * | |
| * the final placement cost from scratch and makes sure it is * | |
| * within roundoff of what we think the cost is. */ | |
| vtr::vector<ClusterBlockId, int> bdone; | |
| int error = 0; | |
| ClusterBlockId bnum, head_iblk, member_iblk; | |
| float bb_cost_check; | |
| int usage_check; | |
| float timing_cost_check, delay_cost_check; | |
| int imacro, imember, member_x, member_y, member_z; | |
| bb_cost_check = comp_bb_cost(CHECK); | |
| //vtr::printf_info("bb_cost recomputed from scratch: %g\n", bb_cost_check); | |
| if (fabs(bb_cost_check - bb_cost) > bb_cost * ERROR_TOL) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "bb_cost_check: %g and bb_cost: %g differ in check_place.\n", | |
| bb_cost_check, bb_cost); | |
| error++; | |
| } | |
| if (place_algorithm == PATH_TIMING_DRIVEN_PLACE) { | |
| comp_td_costs(&timing_cost_check, &delay_cost_check); | |
| //vtr::printf_info("timing_cost recomputed from scratch: %g\n", timing_cost_check); | |
| if (fabs(timing_cost_check - timing_cost) > timing_cost * ERROR_TOL) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "timing_cost_check: %g and timing_cost: %g differ in check_place.\n", | |
| timing_cost_check, timing_cost); | |
| error++; | |
| } | |
| //vtr::printf_info("delay_cost recomputed from scratch: %g\n", delay_cost_check); | |
| if (fabs(delay_cost_check - delay_cost) > delay_cost * ERROR_TOL) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "delay_cost_check: %g and delay_cost: %g differ in check_place.\n", | |
| delay_cost_check, delay_cost); | |
| error++; | |
| } | |
| } | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| auto& device_ctx = g_vpr_ctx.device(); | |
| bdone.resize(cluster_ctx.clb_nlist.blocks().size(), 0); | |
| /* Step through device grid and placement. Check it against blocks */ | |
| for (size_t i = 0; i < device_ctx.grid.width(); i++) | |
| for (size_t j = 0; j < device_ctx.grid.height(); j++) { | |
| if (place_ctx.grid_blocks[i][j].usage > device_ctx.grid[i][j].type->capacity) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block at grid location (%zu,%zu) overused. Usage is %d.\n", | |
| i, j, place_ctx.grid_blocks[i][j].usage); | |
| error++; | |
| } | |
| usage_check = 0; | |
| for (int k = 0; k < device_ctx.grid[i][j].type->capacity; k++) { | |
| bnum = place_ctx.grid_blocks[i][j].blocks[k]; | |
| if (EMPTY_BLOCK_ID == bnum || INVALID_BLOCK_ID == bnum) | |
| continue; | |
| if (cluster_ctx.clb_nlist.block_type(bnum) != device_ctx.grid[i][j].type) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block %zu type does not match grid location (%zu,%zu) type.\n", | |
| size_t(bnum), i, j); | |
| error++; | |
| } | |
| if ((place_ctx.block_locs[bnum].x != int(i)) || (place_ctx.block_locs[bnum].y != int(j))) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block %zu location conflicts with grid(%zu,%zu) data.\n", | |
| size_t(bnum), i, j); | |
| error++; | |
| } | |
| ++usage_check; | |
| bdone[bnum]++; | |
| } | |
| if (usage_check != place_ctx.grid_blocks[i][j].usage) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Location (%zu,%zu) usage is %d, but has actual usage %d.\n", | |
| i, j, place_ctx.grid_blocks[i][j].usage, usage_check); | |
| error++; | |
| } | |
| } | |
| /* Check that every block exists in the device_ctx.grid and cluster_ctx.blocks arrays somewhere. */ | |
| for (auto blk_id : cluster_ctx.clb_nlist.blocks()) | |
| if (bdone[blk_id] != 1) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block %zu listed %d times in data structures.\n", | |
| size_t(blk_id), bdone[blk_id]); | |
| error++; | |
| } | |
| bdone.clear(); | |
| /* Check the pl_macro placement are legal - blocks are in the proper relative position. */ | |
| for (imacro = 0; imacro < num_pl_macros; imacro++) { | |
| head_iblk = pl_macros[imacro].members[0].blk_index; | |
| for (imember = 0; imember < pl_macros[imacro].num_blocks; imember++) { | |
| member_iblk = pl_macros[imacro].members[imember].blk_index; | |
| // Compute the suppossed member's x,y,z location | |
| member_x = place_ctx.block_locs[head_iblk].x + pl_macros[imacro].members[imember].x_offset; | |
| member_y = place_ctx.block_locs[head_iblk].y + pl_macros[imacro].members[imember].y_offset; | |
| member_z = place_ctx.block_locs[head_iblk].z + pl_macros[imacro].members[imember].z_offset; | |
| // Check the place_ctx.block_locs data structure first | |
| if (place_ctx.block_locs[member_iblk].x != member_x | |
| || place_ctx.block_locs[member_iblk].y != member_y | |
| || place_ctx.block_locs[member_iblk].z != member_z) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block %zu in pl_macro #%d is not placed in the proper orientation.\n", | |
| size_t(member_iblk), imacro); | |
| error++; | |
| } | |
| // Then check the place_ctx.grid data structure | |
| if (place_ctx.grid_blocks[member_x][member_y].blocks[member_z] != member_iblk) { | |
| vtr::printf_error(__FILE__, __LINE__, | |
| "Block %zu in pl_macro #%d is not placed in the proper orientation.\n", | |
| size_t(member_iblk), imacro); | |
| error++; | |
| } | |
| } // Finish going through all the members | |
| } // Finish going through all the macros | |
| if (error == 0) { | |
| vtr::printf_info("\n"); | |
| vtr::printf_info("Completed placement consistency check successfully.\n"); | |
| } else { | |
| vpr_throw(VPR_ERROR_PLACE, __FILE__, __LINE__, | |
| "\nCompleted placement consistency check, %d errors found.\n" | |
| "Aborting program.\n", error); | |
| } | |
| } | |
| #ifdef VERBOSE | |
| static void print_clb_placement(const char *fname) { | |
| /* Prints out the clb placements to a file. */ | |
| FILE *fp; | |
| auto& cluster_ctx = g_vpr_ctx.clustering(); | |
| auto& place_ctx = g_vpr_ctx.placement(); | |
| fp = vtr::fopen(fname, "w"); | |
| fprintf(fp, "Complex block placements:\n\n"); | |
| fprintf(fp, "Block #\tName\t(X, Y, Z).\n"); | |
| for(auto i : cluster_ctx.clb_nlist.blocks()) { | |
| fprintf(fp, "#%d\t%s\t(%d, %d, %d).\n", i, cluster_ctx.clb_nlist.block_name(i), place_ctx.block_locs[i].x, place_ctx.block_locs[i].y, place_ctx.block_locs[i].z); | |
| } | |
| fclose(fp); | |
| } | |
| #endif | |
| static void free_try_swap_arrays() { | |
| if(blocks_affected.moved_blocks != nullptr) { | |
| free(blocks_affected.moved_blocks); | |
| blocks_affected.moved_blocks = nullptr; | |
| blocks_affected.num_moved_blocks = 0; | |
| } | |
| } | |