blob: 8fa3b0b588ce045b38cb6c92af8c9b28ee447b4d [file] [log] [blame] [edit]
#include <sys/types.h>
#include <cstdio>
#include <ctime>
#include <climits>
using namespace std;
#include "util.h"
#include "vpr_types.h"
#include "vpr_utils.h"
#include "globals.h"
#include "place_and_route.h"
#include "place.h"
#include "read_place.h"
#include "route_export.h"
#include "draw.h"
#include "stats.h"
#include "check_route.h"
#include "rr_graph.h"
#include "path_delay.h"
#include "net_delay.h"
#include "timing_place.h"
#include "read_xml_arch_file.h"
#include "ReadOptions.h"
#include "route_common.h"
#include "place_macro.h"
#include "verilog_writer.h"
#include "power.h"
/******************* Subroutines local to this module ************************/
static int binary_search_place_and_route(struct s_placer_opts placer_opts,
char *place_file, char *net_file, char *arch_file, char *route_file,
boolean full_stats, boolean verify_binary_search,
struct s_annealing_sched annealing_sched,
struct s_router_opts router_opts,
struct s_det_routing_arch det_routing_arch, t_segment_inf * segment_inf,
t_timing_inf timing_inf, t_chan_width_dist chan_width_dist,
t_model *models, t_direct_inf *directs, int num_directs);
static float comp_width(t_chan * chan, float x, float separation);
void post_place_sync(INP int L_num_blocks,
INOUTP const struct s_block block_list[]);
void free_pb_data(t_pb *pb);
//===========================================================================//
#include "TFH_FabricChannelHandler.h"
static bool init_chan_override(int* chan_override_max);
static bool init_chan_override_widths(TFH_SelectChannelMode_t selectChannel,
int nxny, int* chan_width_xy, int* chan_override_max);
//===========================================================================//
/************************* Subroutine Definitions ****************************/
boolean place_and_route(enum e_operation operation,
struct s_placer_opts placer_opts, char *place_file, char *net_file,
char *arch_file, char *route_file,
struct s_annealing_sched annealing_sched,
struct s_router_opts router_opts,
struct s_det_routing_arch det_routing_arch, t_segment_inf * segment_inf,
t_timing_inf timing_inf, t_chan_width_dist chan_width_dist,
struct s_model *models,
t_direct_inf *directs, int num_directs) {
/* This routine controls the overall placement and routing of a circuit. */
char msg[BUFSIZE];
boolean success = FALSE;
t_chunk net_delay_ch = {NULL, 0, NULL};
/*struct s_linked_vptr *net_delay_chunk_list_head;*/
t_ivec **clb_opins_used_locally = NULL; /* [0..num_blocks-1][0..num_class-1] */
clock_t begin, end;
int max_pins_per_clb = 0;
for (int i = 0; i < num_types; ++i) {
if (type_descriptors[i].num_pins > max_pins_per_clb) {
max_pins_per_clb = type_descriptors[i].num_pins;
}
}
if (placer_opts.place_freq == PLACE_NEVER) {
/* Read the placement from a file */
read_place(place_file, net_file, arch_file, nx, ny, num_blocks, block);
sync_grid_to_blocks(num_blocks, block, nx, ny, grid);
} else {
assert((PLACE_ONCE == placer_opts.place_freq) || (PLACE_ALWAYS == placer_opts.place_freq));
begin = clock();
try_place(placer_opts, annealing_sched, chan_width_dist, router_opts,
det_routing_arch, segment_inf, timing_inf, directs, num_directs);
print_place(place_file, net_file, arch_file);
end = clock();
#ifdef CLOCKS_PER_SEC
vpr_printf_info("Placement took %g seconds.\n", (float)(end - begin) / CLOCKS_PER_SEC);
#else
vpr_printf_info("Placement took %g seconds.\n", (float)(end - begin) / CLK_PER_SEC);
#endif
}
begin = clock();
post_place_sync(num_blocks, block);
fflush(stdout);
int width_fac = router_opts.fixed_channel_width;
if (!router_opts.doRouting) {
if(width_fac != NO_FIXED_CHANNEL_WIDTH) {
//Only try if a fixed channel width is specified
try_graph(width_fac, router_opts, det_routing_arch,
segment_inf, timing_inf, chan_width_dist,
directs, num_directs);
}
return(TRUE);
}
/* If channel width not fixed, use binary search to find min W */
if (NO_FIXED_CHANNEL_WIDTH == width_fac) {
g_solution_inf.channel_width = binary_search_place_and_route(placer_opts, place_file, net_file,
arch_file, route_file, router_opts.full_stats,
router_opts.verify_binary_search, annealing_sched, router_opts,
det_routing_arch, segment_inf, timing_inf, chan_width_dist,
models, directs, num_directs);
success = (g_solution_inf.channel_width > 0 ? TRUE : FALSE);
} else {
g_solution_inf.channel_width = width_fac;
if (det_routing_arch.directionality == UNI_DIRECTIONAL) {
if (width_fac % 2 != 0) {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"in pack_place_and_route.c: Given odd chan width (%d) for udsd architecture.\n",
width_fac);
}
}
/* Other constraints can be left to rr_graph to check since this is one pass routing */
/* Allocate the major routing structures. */
clb_opins_used_locally = alloc_route_structs();
t_slack *slacks = alloc_and_load_timing_graph(timing_inf);
float **net_delay = alloc_net_delay(&net_delay_ch, g_clbs_nlist.net, g_clbs_nlist.net.size());
boolean Fc_clipped = FALSE;
success = try_route(width_fac, router_opts, det_routing_arch,
segment_inf, timing_inf, net_delay, slacks, chan_width_dist,
clb_opins_used_locally, &Fc_clipped, directs, num_directs);
if (Fc_clipped) {
vpr_printf_warning(__FILE__, __LINE__,
"Fc_output was too high and was clipped to full (maximum) connectivity.\n");
}
if (success == FALSE) {
vpr_printf_info("Circuit is unroutable with a channel width factor of %d.\n", width_fac);
sprintf(msg, "Routing failed with a channel width factor of %d. ILLEGAL routing shown.", width_fac);
}
else {
check_route(router_opts.route_type, det_routing_arch.num_switch, clb_opins_used_locally);
get_serial_num();
vpr_printf_info("Circuit successfully routed with a channel width factor of %d.\n", width_fac);
routing_stats(router_opts.full_stats, router_opts.route_type,
det_routing_arch.num_switch, segment_inf,
det_routing_arch.num_segment, det_routing_arch.R_minW_nmos,
det_routing_arch.R_minW_pmos,
det_routing_arch.directionality,
timing_inf.timing_analysis_enabled, net_delay, slacks);
print_route(route_file);
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_ROUTING_SINK_DELAYS)) {
print_sink_delays(getEchoFileName(E_ECHO_ROUTING_SINK_DELAYS));
}
sprintf(msg, "Routing succeeded with a channel width factor of %d.\n\n", width_fac);
}
init_draw_coords(max_pins_per_clb);
update_screen(MAJOR, msg, ROUTING, timing_inf.timing_analysis_enabled);
if (timing_inf.timing_analysis_enabled) {
assert(slacks->slack);
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_POST_FLOW_TIMING_GRAPH)) {
print_timing_graph_as_blif (getEchoFileName(E_ECHO_POST_FLOW_TIMING_GRAPH), models);
}
if(GetPostSynthesisOption())
{
verilog_writer();
}
free_timing_graph(slacks);
assert(net_delay);
free_net_delay(net_delay, &net_delay_ch);
}
fflush(stdout);
}
if (clb_opins_used_locally != NULL) {
for (int i = 0; i < num_blocks; ++i) {
free_ivec_vector(clb_opins_used_locally[i], 0,
block[i].type->num_class - 1);
}
free(clb_opins_used_locally);
clb_opins_used_locally = NULL;
}
/* Frees up all the data structure used in vpr_utils. */
free_port_pin_from_blk_pin();
free_blk_pin_from_port_pin();
end = clock();
#ifdef CLOCKS_PER_SEC
vpr_printf_info("Routing took %g seconds.\n", (float)(end - begin) / CLOCKS_PER_SEC);
#else
vpr_printf_info("Routing took %g seconds.\n", (float)(end - begin) / CLK_PER_SEC);
#endif
/*WMF: cleaning up memory usage */
/* if (g_heap_free_head)
free(g_heap_free_head);
if (g_trace_free_head)
free(g_trace_free_head);
if (g_linked_f_pointer_free_head)
free(g_linked_f_pointer_free_head);*/
return(success);
}
static int binary_search_place_and_route(struct s_placer_opts placer_opts,
char *place_file, char *net_file, char *arch_file, char *route_file,
boolean full_stats, boolean verify_binary_search,
struct s_annealing_sched annealing_sched,
struct s_router_opts router_opts,
struct s_det_routing_arch det_routing_arch, t_segment_inf * segment_inf,
t_timing_inf timing_inf, t_chan_width_dist chan_width_dist,
t_model *models, t_direct_inf *directs, int num_directs) {
/* This routine performs a binary search to find the minimum number of *
* tracks per channel required to successfully route a circuit, and returns *
* that minimum width_fac. */
struct s_trace **best_routing; /* Saves the best routing found so far. */
int current, low, high, final;
int max_pins_per_clb, i;
boolean success, prev_success, prev2_success, Fc_clipped = FALSE;
char msg[BUFSIZE];
float **net_delay = NULL;
t_slack * slacks = NULL;
t_chunk net_delay_ch = {NULL, 0, NULL};
/*struct s_linked_vptr *net_delay_chunk_list_head;*/
t_ivec **clb_opins_used_locally, **saved_clb_opins_used_locally;
/* [0..num_blocks-1][0..num_class-1] */
int attempt_count;
int udsd_multiplier;
int warnings;
t_graph_type graph_type;
/* Allocate the major routing structures. */
if (router_opts.route_type == GLOBAL) {
graph_type = GRAPH_GLOBAL;
} else {
graph_type = (
det_routing_arch.directionality == BI_DIRECTIONAL ?
GRAPH_BIDIR : GRAPH_UNIDIR);
}
max_pins_per_clb = 0;
for (i = 0; i < num_types; i++) {
max_pins_per_clb = max(max_pins_per_clb, type_descriptors[i].num_pins);
}
clb_opins_used_locally = alloc_route_structs();
best_routing = alloc_saved_routing(clb_opins_used_locally,
&saved_clb_opins_used_locally);
slacks = alloc_and_load_timing_graph(timing_inf);
net_delay = alloc_net_delay(&net_delay_ch, g_clbs_nlist.net, g_clbs_nlist.net.size());
/* UDSD by AY Start */
if (det_routing_arch.directionality == BI_DIRECTIONAL)
udsd_multiplier = 1;
else
udsd_multiplier = 2;
/* UDSD by AY End */
if (router_opts.fixed_channel_width != NO_FIXED_CHANNEL_WIDTH) {
current = router_opts.fixed_channel_width + 5 * udsd_multiplier;
low = router_opts.fixed_channel_width - 1 * udsd_multiplier;
} else {
current = max_pins_per_clb + max_pins_per_clb % 2; /* Binary search part */
low = -1;
}
/* Constraints must be checked to not break rr_graph generator */
if (det_routing_arch.directionality == UNI_DIRECTIONAL) {
if (current % 2 != 0) {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"in pack_place_and_route.c: Tried odd chan width (%d) for udsd architecture.\n",
current);
}
}
else {
if (det_routing_arch.Fs % 3) {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"Fs must be three in bidirectional mode.\n");
}
}
high = -1;
final = -1;
attempt_count = 0;
while (final == -1) {
vpr_printf_info("\n");
vpr_printf_info("Using low: %d, high: %d, current: %d\n", low, high, current);
fflush(stdout);
/* Check if the channel width is huge to avoid overflow. Assume the *
* circuit is unroutable with the current router options if we're *
* going to overflow. */
if (router_opts.fixed_channel_width != NO_FIXED_CHANNEL_WIDTH) {
if (current > router_opts.fixed_channel_width * 4) {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"This circuit appears to be unroutable with the current router options. Last failed at %d.\n"
"Aborting routing procedure.\n", low);
}
} else {
if (current > 1000) {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"This circuit requires a channel width above 1000, probably is not going to route.\n"
"Aborting routing procedure.\n");
}
}
if ((current * 3) < det_routing_arch.Fs) {
vpr_printf_info("Width factor is now below specified Fs. Stop search.\n");
final = high;
break;
}
if (placer_opts.place_freq == PLACE_ALWAYS) {
placer_opts.place_chan_width = current;
try_place(placer_opts, annealing_sched, chan_width_dist,
router_opts, det_routing_arch, segment_inf, timing_inf,
directs, num_directs);
}
success = try_route(current, router_opts, det_routing_arch, segment_inf,
timing_inf, net_delay, slacks, chan_width_dist,
clb_opins_used_locally, &Fc_clipped, directs, num_directs);
attempt_count++;
fflush(stdout);
#if 1
if (success && (Fc_clipped == FALSE)) {
#else
if (success
&& (Fc_clipped == FALSE
|| det_routing_arch.Fc_type == FRACTIONAL))
{
#endif
if (current == high) {
/* Can't go any lower */
final = current;
}
high = current;
/* If Fc_output is too high, set to full connectivity but warn the user */
if (Fc_clipped) {
vpr_printf_warning(__FILE__, __LINE__,
"Fc_output was too high and was clipped to full (maximum) connectivity.\n");
}
/* If we're re-placing constantly, save placement in case it is best. */
#if 0
if (placer_opts.place_freq == PLACE_ALWAYS)
{
print_place(place_file, net_file, arch_file);
}
#endif
/* Save routing in case it is best. */
save_routing(best_routing, clb_opins_used_locally,
saved_clb_opins_used_locally);
if ((high - low) <= 1 * udsd_multiplier)
final = high;
if (low != -1) {
current = (high + low) / 2;
} else {
current = high / 2; /* haven't found lower bound yet */
}
} else { /* last route not successful */
if (success && Fc_clipped) {
vpr_printf_info("Routing rejected, Fc_output was too high.\n");
success = FALSE;
}
low = current;
if (high != -1) {
if ((high - low) <= 1 * udsd_multiplier)
final = high;
current = (high + low) / 2;
} else {
if (router_opts.fixed_channel_width != NO_FIXED_CHANNEL_WIDTH) {
/* FOR Wneed = f(Fs) search */
if (low < router_opts.fixed_channel_width + 30) {
current = low + 5 * udsd_multiplier;
} else {
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"Aborting: Wneed = f(Fs) search found exceedingly large Wneed (at least %d).\n", low);
}
} else {
current = low * 2; /* Haven't found upper bound yet */
}
}
}
current = current + current % udsd_multiplier;
}
/* The binary search above occassionally does not find the minimum *
* routeable channel width. Sometimes a circuit that will not route *
* in 19 channels will route in 18, due to router flukiness. If *
* verify_binary_search is set, the code below will ensure that FPGAs *
* with channel widths of final-2 and final-3 wil not route *
* successfully. If one does route successfully, the router keeps *
* trying smaller channel widths until two in a row (e.g. 8 and 9) *
* fail. */
if (verify_binary_search) {
vpr_printf_info("\n");
vpr_printf_info("Verifying that binary search found min channel width...\n");
prev_success = TRUE; /* Actually final - 1 failed, but this makes router */
/* try final-2 and final-3 even if both fail: safer */
prev2_success = TRUE;
current = final - 2;
while (prev2_success || prev_success) {
if ((router_opts.fixed_channel_width != NO_FIXED_CHANNEL_WIDTH)
&& (current < router_opts.fixed_channel_width)) {
break;
}
fflush(stdout);
if (current < 1)
break;
if (placer_opts.place_freq == PLACE_ALWAYS) {
placer_opts.place_chan_width = current;
try_place(placer_opts, annealing_sched, chan_width_dist,
router_opts, det_routing_arch, segment_inf, timing_inf,
directs, num_directs);
}
success = try_route(current, router_opts, det_routing_arch,
segment_inf, timing_inf, net_delay, slacks,
chan_width_dist, clb_opins_used_locally, &Fc_clipped, directs, num_directs);
if (success && Fc_clipped == FALSE) {
final = current;
save_routing(best_routing, clb_opins_used_locally,
saved_clb_opins_used_locally);
if (placer_opts.place_freq == PLACE_ALWAYS) {
print_place(place_file, net_file, arch_file);
}
}
prev2_success = prev_success;
prev_success = success;
current--;
if (det_routing_arch.directionality == UNI_DIRECTIONAL) {
current--; /* width must be even */
}
}
}
/* End binary search verification. */
/* Restore the best placement (if necessary), the best routing, and *
* * the best channel widths for final drawing and statistics output. */
init_chan(final, &router_opts.fixed_channel_width, chan_width_dist);
#if 0
if (placer_opts.place_freq == PLACE_ALWAYS)
{
vpr_printf_info("Reading best placement back in.\n");
placer_opts.place_chan_width = final;
read_place(place_file, net_file, arch_file, placer_opts,
router_opts, chan_width_dist, det_routing_arch,
segment_inf, timing_inf);
}
#endif
free_rr_graph();
build_rr_graph(graph_type, num_types, type_descriptors, nx, ny, grid,
&chan_width, NULL, det_routing_arch.switch_block_type,
det_routing_arch.Fs, det_routing_arch.num_segment,
det_routing_arch.num_switch, segment_inf,
det_routing_arch.global_route_switch,
det_routing_arch.delayless_switch, timing_inf,
det_routing_arch.wire_to_ipin_switch,
router_opts.base_cost_type,
router_opts.trim_empty_channels,
router_opts.trim_obs_channels,
directs, num_directs, FALSE, FALSE,
&warnings);
restore_routing(best_routing, clb_opins_used_locally,
saved_clb_opins_used_locally);
check_route(router_opts.route_type, det_routing_arch.num_switch,
clb_opins_used_locally);
get_serial_num();
if (Fc_clipped) {
vpr_printf_warning(__FILE__, __LINE__,
"Best routing Fc_output too high, clipped to full (maximum) connectivity.\n");
}
vpr_printf_info("Best routing used a channel width factor of %d.\n", final);
routing_stats(full_stats, router_opts.route_type,
det_routing_arch.num_switch, segment_inf,
det_routing_arch.num_segment, det_routing_arch.R_minW_nmos,
det_routing_arch.R_minW_pmos, det_routing_arch.directionality,
timing_inf.timing_analysis_enabled, net_delay, slacks);
print_route(route_file);
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_ROUTING_SINK_DELAYS)) {
print_sink_delays(getEchoFileName(E_ECHO_ROUTING_SINK_DELAYS));
}
init_draw_coords(max_pins_per_clb);
sprintf(msg, "Routing succeeded with a channel width factor of %d.", final);
update_screen(MAJOR, msg, ROUTING, timing_inf.timing_analysis_enabled);
if (timing_inf.timing_analysis_enabled) {
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_POST_FLOW_TIMING_GRAPH)) {
print_timing_graph_as_blif (getEchoFileName(E_ECHO_POST_FLOW_TIMING_GRAPH), models);
}
if(GetPostSynthesisOption())
{
verilog_writer();
}
free_timing_graph(slacks);
free_net_delay(net_delay, &net_delay_ch);
}
for (i = 0; i < num_blocks; i++) {
free_ivec_vector(clb_opins_used_locally[i], 0,
block[i].type->num_class - 1);
}
free(clb_opins_used_locally);
clb_opins_used_locally = NULL;
free_saved_routing(best_routing, saved_clb_opins_used_locally);
fflush(stdout);
return (final);
}
void init_chan(int cfactor, int* chan_override_max, t_chan_width_dist chan_width_dist) {
/* Assigns widths to channels (in tracks). Minimum one track *
* per channel. io channels are io_rat * maximum in interior *
* tracks wide. The channel distributions read from the architecture *
* file are scaled by cfactor. */
float chan_width_io = chan_width_dist.chan_width_io;
t_chan chan_x_dist = chan_width_dist.chan_x_dist;
t_chan chan_y_dist = chan_width_dist.chan_y_dist;
/* io channel widths */
int nio = (int) floor(cfactor * chan_width_io + 0.5);
if (nio == 0)
nio = 1; /* No zero width channels */
chan_width.x_list[0] = chan_width.x_list[ny] = nio;
chan_width.y_list[0] = chan_width.y_list[nx] = nio;
if (ny > 1) {
float separation = 1.0 / (ny - 2.0); /* Norm. distance between two channels. */
float y = 0.0; /* This avoids div by zero if ny = 2.0 */
chan_width.x_list[1] = (int) floor(cfactor * comp_width(&chan_x_dist, y, separation) + 0.5);
/* No zero width channels */
chan_width.x_list[1] = max(chan_width.x_list[1], 1);
for (int i = 1; i < ny - 1; ++i) {
y = (float) i / ((float) (ny - 2.0));
chan_width.x_list[i + 1] = (int) floor(cfactor * comp_width(&chan_x_dist, y, separation) + 0.5);
chan_width.x_list[i + 1] = max(chan_width.x_list[i + 1], 1);
}
}
if (nx > 1) {
float separation = 1.0 / (nx - 2.0); /* Norm. distance between two channels. */
float x = 0.0; /* Avoids div by zero if nx = 2.0 */
chan_width.y_list[1] = (int) floor(cfactor * comp_width(&chan_y_dist, x, separation) + 0.5);
chan_width.y_list[1] = max(chan_width.y_list[1], 1);
for (int i = 1; i < nx - 1; ++i) {
x = (float) i / ((float) (nx - 2.0));
chan_width.y_list[i + 1] = (int) floor(cfactor * comp_width(&chan_y_dist, x, separation) + 0.5);
chan_width.y_list[i + 1] = max(chan_width.y_list[i + 1], 1);
}
}
if (chan_override_max) {
init_chan_override(chan_override_max);
}
chan_width.max = 0;
chan_width.x_max = chan_width.y_max = INT_MIN;
chan_width.x_min = chan_width.y_min = INT_MAX;
for (int i = 0; i <= ny ; ++i) {
chan_width.max = max(chan_width.max, chan_width.x_list[i]);
chan_width.x_max = max(chan_width.x_max, chan_width.x_list[i]);
chan_width.x_min = min(chan_width.x_min, chan_width.x_list[i]);
}
for (int i = 0; i <= nx ; ++i) {
chan_width.max = max(chan_width.max, chan_width.y_list[i]);
chan_width.y_max = max(chan_width.y_max, chan_width.y_list[i]);
chan_width.y_min = min(chan_width.y_min, chan_width.y_list[i]);
}
#ifdef VERBOSE
vpr_printf_info("\n");
vpr_printf_info("chan_width.x_list:\n");
for (int i = 0; i <= ny ; ++i)
vpr_printf_info("%d ", chan_width.x_list[i]);
vpr_printf_info("\n");
vpr_printf_info("chan_width.y_list:\n");
for (int i = 0; i <= nx ; ++i)
vpr_printf_info("%d ", chan_width.y_list[i]);
vpr_printf_info("\n");
#endif
}
//===========================================================================//
static bool init_chan_override(int* chan_override_max) {
/* Overrrides architecture-based channel widths based on optional fabric model channel widths. */
bool ok = true;
TFH_FabricChannelHandler_c& fabricChannelHandler = TFH_FabricChannelHandler_c::GetInstance();
if (fabricChannelHandler.IsValid()) {
vpr_printf_info("Overriding architecture channels based on fabric channel widths...\n");
// Override channel widths by x and y orientations
*chan_override_max = 0;
if (ok)
ok = init_chan_override_widths( TFH_SELECT_CHANNEL_X, ny, chan_width.x_list, chan_override_max);
if (ok)
ok = init_chan_override_widths( TFH_SELECT_CHANNEL_Y, nx, chan_width.y_list, chan_override_max);
}
return (ok);
}
//===========================================================================//
static bool init_chan_override_widths(TFH_SelectChannelMode_t selectChannel,
int nxny, int* chan_width_xy, int* chan_override_max) {
bool ok = true;
TFH_FabricChannelHandler_c& fabricChannelHandler = TFH_FabricChannelHandler_c::GetInstance();
if (fabricChannelHandler.IsValid()) {
for (size_t i = 0; i < fabricChannelHandler.GetLength(selectChannel); ++i) {
const TFH_ChannelWidth_t& channelWidth = *fabricChannelHandler.At(selectChannel, i);
int index = channelWidth.GetIndex( );
int count = channelWidth.GetCount( );
// Ignore any fabric channel widths beyond VPR's current grid size
if (index > nxny )
break;
if (chan_width_xy[index] != count) {
ok = vpr_printf_warning(__FILE__, __LINE__,
"Replacing architecture %s channel[%d] width %d with fabric channel width %d.\n",
selectChannel == TFH_SELECT_CHANNEL_X ? "x" : "y",
index, chan_width_xy[index], count);
chan_width_xy[index] = count;
*chan_override_max = max(*chan_override_max, count);
}
}
}
return (ok);
}
//===========================================================================//
static float comp_width(t_chan * chan, float x, float separation) {
/* Return the relative channel density. *chan points to a channel *
* functional description data structure, and x is the distance *
* (between 0 and 1) we are across the chip. separation is the *
* distance between two channels, in the 0 to 1 coordinate system. */
float val;
switch (chan->type) {
case UNIFORM:
val = chan->peak;
break;
case GAUSSIAN:
val = (x - chan->xpeak) * (x - chan->xpeak)
/ (2 * chan->width * chan->width);
val = chan->peak * exp(-val);
val += chan->dc;
break;
case PULSE:
val = (float) fabs((double) (x - chan->xpeak));
if (val > chan->width / 2.) {
val = 0;
} else {
val = chan->peak;
}
val += chan->dc;
break;
case DELTA:
val = x - chan->xpeak;
if (val > -separation / 2. && val <= separation / 2.)
val = chan->peak;
else
val = 0.;
val += chan->dc;
break;
default:
vpr_throw(VPR_ERROR_ROUTE, __FILE__, __LINE__,
"in comp_width: Unknown channel type %d.\n", chan->type);
val = OPEN;
break;
}
return (val);
}
/* After placement, logical pins for blocks, and nets must be updated to correspond with physical pins of type */
/* This function should only be called once */
void post_place_sync(INP int L_num_blocks,
INOUTP const struct s_block block_list[]) {
int iblk, j, inet;
unsigned k;
t_type_ptr type;
int max_num_block_pins;
/* Go through each block */
for (iblk = 0; iblk < L_num_blocks; ++iblk) {
type = block[iblk].type;
assert(type->num_pins % type->capacity == 0);
max_num_block_pins = type->num_pins / type->capacity;
/* Logical location and physical location is offset by z * max_num_block_pins */
/* Sync blocks and nets */
for (j = 0; j < max_num_block_pins; j++) {
inet = block[iblk].nets[j];
if (inet != OPEN && block[iblk].z > 0) {
assert(
block[iblk]. nets[j + block[iblk].z * max_num_block_pins] == OPEN);
block[iblk].nets[j + block[iblk].z * max_num_block_pins] =
block[iblk].nets[j];
block[iblk].nets[j] = OPEN;
for (k = 0; k < g_clbs_nlist.net[inet].pins.size(); k++) {
if (g_clbs_nlist.net[inet].pins[k].block == iblk && g_clbs_nlist.net[inet].pins[k].block_pin == j) {
g_clbs_nlist.net[inet].pins[k].block_pin = j
+ block[iblk].z * max_num_block_pins;
clb_net[inet].node_block_pin[k] = j
+ block[iblk].z * max_num_block_pins; //Daniel to-do: take out clb_net later
break;
}
}
assert(k < g_clbs_nlist.net[inet].pins.size());
}
}
}
}
void free_pb_data(t_pb *pb) {
int i, j;
const t_pb_type *pb_type;
t_rr_node *temp;
if (pb == NULL || pb->name == NULL) {
return;
}
pb_type = pb->pb_graph_node->pb_type;
/* free existing rr graph for pb */
if (pb->rr_graph) {
temp = rr_node;
rr_node = pb->rr_graph;
num_rr_nodes = pb->pb_graph_node->total_pb_pins;
free_rr_graph();
rr_node = temp;
}
if (pb_type->num_modes > 0) {
/* Free children of pb */
for (i = 0; i < pb_type->modes[pb->mode].num_pb_type_children; i++) {
for (j = 0; j < pb_type->modes[pb->mode].pb_type_children[i].num_pb;
j++) {
if (pb->child_pbs[i]) {
free_pb_data(&pb->child_pbs[i][j]);
}
}
}
}
/* Frees all the pb data structures. */
if (pb->name) {
free(pb->name);
if (pb->child_pbs) {
free(pb->child_pbs);
}
}
}