| #include <math.h> | |
| #include <stdio.h> | |
| #include <assert.h> | |
| #include <time.h> | |
| #include "util.h" | |
| #include "vpr_types.h" | |
| #include "vpr_utils.h" | |
| #include "globals.h" | |
| #include "route_export.h" | |
| #include "route_common.h" | |
| #include "route_tree_timing.h" | |
| #include "route_timing.h" | |
| #include "route_breadth_first.h" | |
| #include "place_and_route.h" | |
| #include "rr_graph.h" | |
| #include "read_xml_arch_file.h" | |
| #include "ReadOptions.h" | |
| /***************** Variables shared only by route modules *******************/ | |
| t_rr_node_route_inf *rr_node_route_inf = NULL; /* [0..num_rr_nodes-1] */ | |
| struct s_bb *route_bb = NULL; /* [0..num_nets-1]. Limits area in which each */ | |
| /* net must be routed. */ | |
| /**************** Static variables local to route_common.c ******************/ | |
| static struct s_heap **heap; /* Indexed from [1..heap_size] */ | |
| static int heap_size; /* Number of slots in the heap array */ | |
| static int heap_tail; /* Index of first unused slot in the heap array */ | |
| /* For managing my own list of currently free heap data structures. */ | |
| static struct s_heap *heap_free_head = NULL; | |
| /* For keeping track of the sudo malloc memory for the heap*/ | |
| static t_chunk heap_ch = {NULL, 0, NULL}; | |
| /* For managing my own list of currently free trace data structures. */ | |
| static struct s_trace *trace_free_head = NULL; | |
| /* For keeping track of the sudo malloc memory for the trace*/ | |
| static t_chunk trace_ch = {NULL, 0, NULL}; | |
| #ifdef DEBUG | |
| static int num_trace_allocated = 0; /* To watch for memory leaks. */ | |
| static int num_heap_allocated = 0; | |
| static int num_linked_f_pointer_allocated = 0; | |
| #endif | |
| static struct s_linked_f_pointer *rr_modified_head = NULL; | |
| static struct s_linked_f_pointer *linked_f_pointer_free_head = NULL; | |
| static t_chunk linked_f_pointer_ch = {NULL, 0, NULL}; | |
| /* The numbering relation between the channels and clbs is: * | |
| * * | |
| * | IO | chan_ | CLB | chan_ | CLB | * | |
| * |grid[0][2] | y[0][2] |grid[1][2] | y[1][2] | grid[2][2]| * | |
| * +-----------+ +-----------+ +-----------+ * | |
| * } capacity in * | |
| * No channel chan_x[1][1] chan_x[2][1] } chan_width * | |
| * } _x[1] * | |
| * +-----------+ +-----------+ +-----------+ * | |
| * | | chan_ | | chan_ | | * | |
| * | IO | y[0][1] | CLB | y[1][1] | CLB | * | |
| * |grid[0][1] | |grid[1][1] | |grid[2][1] | * | |
| * | | | | | | * | |
| * +-----------+ +-----------+ +-----------+ * | |
| * } capacity in * | |
| * chan_x[1][0] chan_x[2][0] } chan_width * | |
| * } _x[0] * | |
| * +-----------+ +-----------+ * | |
| * No | | No | | * | |
| * Channel | IO | Channel | IO | * | |
| * |grid[1][0] | |grid[2][0] | * | |
| * | | | | * | |
| * +-----------+ +-----------+ * | |
| * * | |
| * {=======} {=======} * | |
| * Capacity in Capacity in * | |
| * chan_width_y[0] chan_width_y[1] * | |
| * */ | |
| /******************** Subroutines local to route_common.c *******************/ | |
| static void free_trace_data(struct s_trace *tptr); | |
| static void load_route_bb(int bb_factor); | |
| static struct s_trace *alloc_trace_data(void); | |
| static void add_to_heap(struct s_heap *hptr); | |
| static struct s_heap *alloc_heap_data(void); | |
| static struct s_linked_f_pointer *alloc_linked_f_pointer(void); | |
| static t_ivec **alloc_and_load_clb_opins_used_locally(void); | |
| static void adjust_one_rr_occ_and_pcost(int inode, int add_or_sub, | |
| float pres_fac); | |
| /************************** Subroutine definitions ***************************/ | |
| void save_routing(struct s_trace **best_routing, | |
| t_ivec ** clb_opins_used_locally, | |
| t_ivec ** saved_clb_opins_used_locally) { | |
| /* This routing frees any routing currently held in best routing, * | |
| * then copies over the current routing (held in trace_head), and * | |
| * finally sets trace_head and trace_tail to all NULLs so that the * | |
| * connection to the saved routing is broken. This is necessary so * | |
| * that the next iteration of the router does not free the saved * | |
| * routing elements. Also saves any data about locally used clb_opins, * | |
| * since this is also part of the routing. */ | |
| int inet, iblk, iclass, ipin, num_local_opins; | |
| struct s_trace *tptr, *tempptr; | |
| t_type_ptr type; | |
| for (inet = 0; inet < num_nets; inet++) { | |
| /* Free any previously saved routing. It is no longer best. */ | |
| tptr = best_routing[inet]; | |
| while (tptr != NULL) { | |
| tempptr = tptr->next; | |
| free_trace_data(tptr); | |
| tptr = tempptr; | |
| } | |
| /* Save a pointer to the current routing in best_routing. */ | |
| best_routing[inet] = trace_head[inet]; | |
| /* Set the current (working) routing to NULL so the current trace * | |
| * elements won't be reused by the memory allocator. */ | |
| trace_head[inet] = NULL; | |
| trace_tail[inet] = NULL; | |
| } | |
| /* Save which OPINs are locally used. */ | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opins = clb_opins_used_locally[iblk][iclass].nelem; | |
| for (ipin = 0; ipin < num_local_opins; ipin++) { | |
| saved_clb_opins_used_locally[iblk][iclass].list[ipin] = | |
| clb_opins_used_locally[iblk][iclass].list[ipin]; | |
| } | |
| } | |
| } | |
| } | |
| void restore_routing(struct s_trace **best_routing, | |
| t_ivec ** clb_opins_used_locally, | |
| t_ivec ** saved_clb_opins_used_locally) { | |
| /* Deallocates any current routing in trace_head, and replaces it with * | |
| * the routing in best_routing. Best_routing is set to NULL to show that * | |
| * it no longer points to a valid routing. NOTE: trace_tail is not * | |
| * restored -- it is set to all NULLs since it is only used in * | |
| * update_traceback. If you need trace_tail restored, modify this * | |
| * routine. Also restores the locally used opin data. */ | |
| int inet, iblk, ipin, iclass, num_local_opins; | |
| t_type_ptr type; | |
| for (inet = 0; inet < num_nets; inet++) { | |
| /* Free any current routing. */ | |
| free_traceback(inet); | |
| /* Set the current routing to the saved one. */ | |
| trace_head[inet] = best_routing[inet]; | |
| best_routing[inet] = NULL; /* No stored routing. */ | |
| } | |
| /* Save which OPINs are locally used. */ | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opins = clb_opins_used_locally[iblk][iclass].nelem; | |
| for (ipin = 0; ipin < num_local_opins; ipin++) { | |
| clb_opins_used_locally[iblk][iclass].list[ipin] = | |
| saved_clb_opins_used_locally[iblk][iclass].list[ipin]; | |
| } | |
| } | |
| } | |
| } | |
| void get_serial_num(void) { | |
| /* This routine finds a "magic cookie" for the routing and prints it. * | |
| * Use this number as a routing serial number to ensure that programming * | |
| * changes do not break the router. */ | |
| int inet, serial_num, inode; | |
| struct s_trace *tptr; | |
| serial_num = 0; | |
| for (inet = 0; inet < num_nets; inet++) { | |
| /* Global nets will have null trace_heads (never routed) so they * | |
| * are not included in the serial number calculation. */ | |
| tptr = trace_head[inet]; | |
| while (tptr != NULL) { | |
| inode = tptr->index; | |
| serial_num += (inet + 1) | |
| * (rr_node[inode].xlow * (nx + 1) - rr_node[inode].yhigh); | |
| serial_num -= rr_node[inode].ptc_num * (inet + 1) * 10; | |
| serial_num -= rr_node[inode].type * (inet + 1) * 100; | |
| serial_num %= 2000000000; /* Prevent overflow */ | |
| tptr = tptr->next; | |
| } | |
| } | |
| vpr_printf(TIO_MESSAGE_INFO, "Serial number (magic cookie) for the routing is: %d\n", serial_num); | |
| } | |
| boolean try_route(int width_fac, struct s_router_opts router_opts, | |
| struct s_det_routing_arch det_routing_arch, t_segment_inf * segment_inf, | |
| t_timing_inf timing_inf, float **net_delay, t_slack * slacks, | |
| t_chan_width_dist chan_width_dist, t_ivec ** clb_opins_used_locally, | |
| boolean * Fc_clipped, t_direct_inf *directs, int num_directs) { | |
| /* Attempts a routing via an iterated maze router algorithm. Width_fac * | |
| * specifies the relative width of the channels, while the members of * | |
| * router_opts determine the value of the costs assigned to routing * | |
| * resource node, etc. det_routing_arch describes the detailed routing * | |
| * architecture (connection and switch boxes) of the FPGA; it is used * | |
| * only if a DETAILED routing has been selected. */ | |
| int tmp; | |
| clock_t begin, end; | |
| boolean success; | |
| t_graph_type graph_type; | |
| if (router_opts.route_type == GLOBAL) { | |
| graph_type = GRAPH_GLOBAL; | |
| } else { | |
| graph_type = ( | |
| det_routing_arch.directionality == BI_DIRECTIONAL ? | |
| GRAPH_BIDIR : GRAPH_UNIDIR); | |
| } | |
| /* Set the channel widths */ | |
| init_chan(width_fac, chan_width_dist); | |
| /* Free any old routing graph, if one exists. */ | |
| free_rr_graph(); | |
| begin = clock(); | |
| /* Set up the routing resource graph defined by this FPGA architecture. */ | |
| build_rr_graph(graph_type, num_types, type_descriptors, nx, ny, grid, | |
| chan_width_x[0], NULL, det_routing_arch.switch_block_type, | |
| det_routing_arch.Fs, det_routing_arch.num_segment, | |
| det_routing_arch.num_switch, segment_inf, | |
| det_routing_arch.global_route_switch, | |
| det_routing_arch.delayless_switch, timing_inf, | |
| det_routing_arch.wire_to_ipin_switch, router_opts.base_cost_type, | |
| directs, num_directs, FALSE, | |
| &tmp); | |
| end = clock(); | |
| #ifdef CLOCKS_PER_SEC | |
| vpr_printf(TIO_MESSAGE_INFO, "Build rr_graph took %g seconds.\n", (float)(end - begin) / CLOCKS_PER_SEC); | |
| #else | |
| vpr_printf(TIO_MESSAGE_INFO, "Build rr_graph took %g seconds.\n", (float)(end - begin) / CLK_PER_SEC); | |
| #endif | |
| /* Allocate and load some additional rr_graph information needed only by * | |
| * the router. */ | |
| alloc_and_load_rr_node_route_structs(); | |
| init_route_structs(router_opts.bb_factor); | |
| if (router_opts.router_algorithm == BREADTH_FIRST) { | |
| vpr_printf(TIO_MESSAGE_INFO, "Confirming Router Algorithm: BREADTH_FIRST.\n"); | |
| success = try_breadth_first_route(router_opts, clb_opins_used_locally, | |
| width_fac); | |
| } else { /* TIMING_DRIVEN route */ | |
| vpr_printf(TIO_MESSAGE_INFO, "Confirming Router Algorithm: TIMING_DRIVEN.\n"); | |
| assert(router_opts.route_type != GLOBAL); | |
| success = try_timing_driven_route(router_opts, net_delay, slacks, | |
| clb_opins_used_locally,timing_inf.timing_analysis_enabled); | |
| } | |
| free_rr_node_route_structs(); | |
| return (success); | |
| } | |
| boolean feasible_routing(void) { | |
| /* This routine checks to see if this is a resource-feasible routing. * | |
| * That is, are all rr_node capacity limitations respected? It assumes * | |
| * that the occupancy arrays are up to date when it is called. */ | |
| int inode; | |
| for (inode = 0; inode < num_rr_nodes; inode++) { | |
| if (rr_node[inode].occ > rr_node[inode].capacity) { | |
| return (FALSE); | |
| } | |
| } | |
| return (TRUE); | |
| } | |
| void pathfinder_update_one_cost(struct s_trace *route_segment_start, | |
| int add_or_sub, float pres_fac) { | |
| /* This routine updates the occupancy and pres_cost of the rr_nodes that are * | |
| * affected by the portion of the routing of one net that starts at * | |
| * route_segment_start. If route_segment_start is trace_head[inet], the * | |
| * cost of all the nodes in the routing of net inet are updated. If * | |
| * add_or_sub is -1 the net (or net portion) is ripped up, if it is 1 the * | |
| * net is added to the routing. The size of pres_fac determines how severly * | |
| * oversubscribed rr_nodes are penalized. */ | |
| struct s_trace *tptr; | |
| int inode, occ, capacity; | |
| tptr = route_segment_start; | |
| if (tptr == NULL) /* No routing yet. */ | |
| return; | |
| for (;;) { | |
| inode = tptr->index; | |
| occ = rr_node[inode].occ + add_or_sub; | |
| capacity = rr_node[inode].capacity; | |
| rr_node[inode].occ = occ; | |
| /* pres_cost is Pn in the Pathfinder paper. I set my pres_cost according to * | |
| * the overuse that would result from having ONE MORE net use this routing * | |
| * node. */ | |
| if (occ < capacity) { | |
| rr_node_route_inf[inode].pres_cost = 1.; | |
| } else { | |
| rr_node_route_inf[inode].pres_cost = 1. | |
| + (occ + 1 - capacity) * pres_fac; | |
| } | |
| if (rr_node[inode].type == SINK) { | |
| tptr = tptr->next; /* Skip next segment. */ | |
| if (tptr == NULL) | |
| break; | |
| } | |
| tptr = tptr->next; | |
| } /* End while loop -- did an entire traceback. */ | |
| } | |
| void pathfinder_update_cost(float pres_fac, float acc_fac) { | |
| /* This routine recomputes the pres_cost and acc_cost of each routing * | |
| * resource for the pathfinder algorithm after all nets have been routed. * | |
| * It updates the accumulated cost to by adding in the number of extra * | |
| * signals sharing a resource right now (i.e. after each complete iteration) * | |
| * times acc_fac. It also updates pres_cost, since pres_fac may have * | |
| * changed. THIS ROUTINE ASSUMES THE OCCUPANCY VALUES IN RR_NODE ARE UP TO * | |
| * DATE. */ | |
| int inode, occ, capacity; | |
| for (inode = 0; inode < num_rr_nodes; inode++) { | |
| occ = rr_node[inode].occ; | |
| capacity = rr_node[inode].capacity; | |
| if (occ > capacity) { | |
| rr_node_route_inf[inode].acc_cost += (occ - capacity) * acc_fac; | |
| rr_node_route_inf[inode].pres_cost = 1. | |
| + (occ + 1 - capacity) * pres_fac; | |
| } | |
| /* If occ == capacity, we don't need to increase acc_cost, but a change * | |
| * in pres_fac could have made it necessary to recompute the cost anyway. */ | |
| else if (occ == capacity) { | |
| rr_node_route_inf[inode].pres_cost = 1. + pres_fac; | |
| } | |
| } | |
| } | |
| void init_route_structs(int bb_factor) { | |
| /* Call this before you route any nets. It frees any old traceback and * | |
| * sets the list of rr_nodes touched to empty. */ | |
| int i; | |
| for (i = 0; i < num_nets; i++) | |
| free_traceback(i); | |
| load_route_bb(bb_factor); | |
| /* Check that things that should have been emptied after the last routing * | |
| * really were. */ | |
| if (rr_modified_head != NULL) { | |
| vpr_printf(TIO_MESSAGE_ERROR, "in init_route_structs. List of modified rr nodes is not empty.\n"); | |
| exit(1); | |
| } | |
| if (heap_tail != 1) { | |
| vpr_printf(TIO_MESSAGE_ERROR, "in init_route_structs. Heap is not empty.\n"); | |
| exit(1); | |
| } | |
| } | |
| struct s_trace * | |
| update_traceback(struct s_heap *hptr, int inet) { | |
| /* This routine adds the most recently finished wire segment to the * | |
| * traceback linked list. The first connection starts with the net SOURCE * | |
| * and begins at the structure pointed to by trace_head[inet]. Each * | |
| * connection ends with a SINK. After each SINK, the next connection * | |
| * begins (if the net has more than 2 pins). The first element after the * | |
| * SINK gives the routing node on a previous piece of the routing, which is * | |
| * the link from the existing net to this new piece of the net. * | |
| * In each traceback I start at the end of a path and trace back through * | |
| * its predecessors to the beginning. I have stored information on the * | |
| * predecesser of each node to make traceback easy -- this sacrificies some * | |
| * memory for easier code maintenance. This routine returns a pointer to * | |
| * the first "new" node in the traceback (node not previously in trace). */ | |
| struct s_trace *tptr, *prevptr, *temptail, *ret_ptr; | |
| int inode; | |
| short iedge; | |
| #ifdef DEBUG | |
| t_rr_type rr_type; | |
| #endif | |
| inode = hptr->index; | |
| #ifdef DEBUG | |
| rr_type = rr_node[inode].type; | |
| if (rr_type != SINK) { | |
| vpr_printf(TIO_MESSAGE_ERROR, "in update_traceback. Expected type = SINK (%d).\n", SINK); | |
| vpr_printf(TIO_MESSAGE_ERROR, "\tGot type = %d while tracing back net %d.\n", rr_type, inet); | |
| exit(1); | |
| } | |
| #endif | |
| tptr = alloc_trace_data(); /* SINK on the end of the connection */ | |
| tptr->index = inode; | |
| tptr->iswitch = OPEN; | |
| tptr->next = NULL; | |
| temptail = tptr; /* This will become the new tail at the end */ | |
| /* of the routine. */ | |
| /* Now do it's predecessor. */ | |
| inode = hptr->u.prev_node; | |
| iedge = hptr->prev_edge; | |
| while (inode != NO_PREVIOUS) { | |
| prevptr = alloc_trace_data(); | |
| prevptr->index = inode; | |
| prevptr->iswitch = rr_node[inode].switches[iedge]; | |
| prevptr->next = tptr; | |
| tptr = prevptr; | |
| iedge = rr_node_route_inf[inode].prev_edge; | |
| inode = rr_node_route_inf[inode].prev_node; | |
| } | |
| if (trace_tail[inet] != NULL) { | |
| trace_tail[inet]->next = tptr; /* Traceback ends with tptr */ | |
| ret_ptr = tptr->next; /* First new segment. */ | |
| } else { /* This was the first "chunk" of the net's routing */ | |
| trace_head[inet] = tptr; | |
| ret_ptr = tptr; /* Whole traceback is new. */ | |
| } | |
| trace_tail[inet] = temptail; | |
| return (ret_ptr); | |
| } | |
| void reset_path_costs(void) { | |
| /* The routine sets the path_cost to HUGE_POSITIVE_FLOAT for all channel segments * | |
| * touched by previous routing phases. */ | |
| struct s_linked_f_pointer *mod_ptr; | |
| #ifdef DEBUG | |
| int num_mod_ptrs; | |
| #endif | |
| /* The traversal method below is slightly painful to make it faster. */ | |
| if (rr_modified_head != NULL) { | |
| mod_ptr = rr_modified_head; | |
| #ifdef DEBUG | |
| num_mod_ptrs = 1; | |
| #endif | |
| while (mod_ptr->next != NULL) { | |
| *(mod_ptr->fptr) = HUGE_POSITIVE_FLOAT; | |
| mod_ptr = mod_ptr->next; | |
| #ifdef DEBUG | |
| num_mod_ptrs++; | |
| #endif | |
| } | |
| *(mod_ptr->fptr) = HUGE_POSITIVE_FLOAT; /* Do last one. */ | |
| /* Reset the modified list and put all the elements back in the free * | |
| * list. */ | |
| mod_ptr->next = linked_f_pointer_free_head; | |
| linked_f_pointer_free_head = rr_modified_head; | |
| rr_modified_head = NULL; | |
| #ifdef DEBUG | |
| num_linked_f_pointer_allocated -= num_mod_ptrs; | |
| #endif | |
| } | |
| } | |
| float get_rr_cong_cost(int inode) { | |
| /* Returns the *congestion* cost of using this rr_node. */ | |
| short cost_index; | |
| float cost; | |
| cost_index = rr_node[inode].cost_index; | |
| cost = rr_indexed_data[cost_index].base_cost | |
| * rr_node_route_inf[inode].acc_cost | |
| * rr_node_route_inf[inode].pres_cost; | |
| return (cost); | |
| } | |
| void mark_ends(int inet) { | |
| /* Mark all the SINKs of this net as targets by setting their target flags * | |
| * to the number of times the net must connect to each SINK. Note that * | |
| * this number can occassionally be greater than 1 -- think of connecting * | |
| * the same net to two inputs of an and-gate (and-gate inputs are logically * | |
| * equivalent, so both will connect to the same SINK). */ | |
| int ipin, inode; | |
| for (ipin = 1; ipin <= clb_net[inet].num_sinks; ipin++) { | |
| inode = net_rr_terminals[inet][ipin]; | |
| rr_node_route_inf[inode].target_flag++; | |
| } | |
| } | |
| void node_to_heap(int inode, float cost, int prev_node, int prev_edge, | |
| float backward_path_cost, float R_upstream) { | |
| /* Puts an rr_node on the heap, if the new cost given is lower than the * | |
| * current path_cost to this channel segment. The index of its predecessor * | |
| * is stored to make traceback easy. The index of the edge used to get * | |
| * from its predecessor to it is also stored to make timing analysis, etc. * | |
| * easy. The backward_path_cost and R_upstream values are used only by the * | |
| * timing-driven router -- the breadth-first router ignores them. */ | |
| struct s_heap *hptr; | |
| if (cost >= rr_node_route_inf[inode].path_cost) | |
| return; | |
| hptr = alloc_heap_data(); | |
| hptr->index = inode; | |
| hptr->cost = cost; | |
| hptr->u.prev_node = prev_node; | |
| hptr->prev_edge = prev_edge; | |
| hptr->backward_path_cost = backward_path_cost; | |
| hptr->R_upstream = R_upstream; | |
| add_to_heap(hptr); | |
| } | |
| void free_traceback(int inet) { | |
| /* Puts the entire traceback (old routing) for this net on the free list * | |
| * and sets the trace_head pointers etc. for the net to NULL. */ | |
| struct s_trace *tptr, *tempptr; | |
| if(trace_head == NULL) { | |
| return; | |
| } | |
| tptr = trace_head[inet]; | |
| while (tptr != NULL) { | |
| tempptr = tptr->next; | |
| free_trace_data(tptr); | |
| tptr = tempptr; | |
| } | |
| trace_head[inet] = NULL; | |
| trace_tail[inet] = NULL; | |
| } | |
| t_ivec ** | |
| alloc_route_structs(void) { | |
| /* Allocates the data structures needed for routing. */ | |
| t_ivec **clb_opins_used_locally; | |
| alloc_route_static_structs(); | |
| clb_opins_used_locally = alloc_and_load_clb_opins_used_locally(); | |
| return (clb_opins_used_locally); | |
| } | |
| void alloc_route_static_structs(void) { | |
| trace_head = (struct s_trace **) my_calloc(num_nets, | |
| sizeof(struct s_trace *)); | |
| trace_tail = (struct s_trace **) my_malloc( | |
| num_nets * sizeof(struct s_trace *)); | |
| heap_size = nx * ny; | |
| heap = (struct s_heap **) my_malloc(heap_size * sizeof(struct s_heap *)); | |
| heap--; /* heap stores from [1..heap_size] */ | |
| heap_tail = 1; | |
| route_bb = (struct s_bb *) my_malloc(num_nets * sizeof(struct s_bb)); | |
| } | |
| struct s_trace ** | |
| alloc_saved_routing(t_ivec ** clb_opins_used_locally, | |
| t_ivec *** saved_clb_opins_used_locally_ptr) { | |
| /* Allocates data structures into which the key routing data can be saved, * | |
| * allowing the routing to be recovered later (e.g. after a another routing * | |
| * is attempted). */ | |
| struct s_trace **best_routing; | |
| t_ivec **saved_clb_opins_used_locally; | |
| int iblk, iclass, num_local_opins; | |
| t_type_ptr type; | |
| best_routing = (struct s_trace **) my_calloc(num_nets, | |
| sizeof(struct s_trace *)); | |
| saved_clb_opins_used_locally = (t_ivec **) my_malloc( | |
| num_blocks * sizeof(t_ivec *)); | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| saved_clb_opins_used_locally[iblk] = (t_ivec *) my_malloc( | |
| type->num_class * sizeof(t_ivec)); | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opins = clb_opins_used_locally[iblk][iclass].nelem; | |
| saved_clb_opins_used_locally[iblk][iclass].nelem = num_local_opins; | |
| if (num_local_opins == 0) { | |
| saved_clb_opins_used_locally[iblk][iclass].list = NULL; | |
| } else { | |
| saved_clb_opins_used_locally[iblk][iclass].list = | |
| (int *) my_malloc(num_local_opins * sizeof(int)); | |
| } | |
| } | |
| } | |
| *saved_clb_opins_used_locally_ptr = saved_clb_opins_used_locally; | |
| return (best_routing); | |
| } | |
| /* TODO: super hacky, jluu comment, I need to rethink this whole function, without it, logically equivalent output pins incorrectly use more pins than needed. I force that CLB output pin uses at most one output pin */ | |
| static t_ivec ** | |
| alloc_and_load_clb_opins_used_locally(void) { | |
| /* Allocates and loads the data needed to make the router reserve some CLB * | |
| * output pins for connections made locally within a CLB (if the netlist * | |
| * specifies that this is necessary). */ | |
| t_ivec **clb_opins_used_locally; | |
| int iblk, clb_pin, iclass, num_local_opins; | |
| int class_low, class_high; | |
| t_type_ptr type; | |
| clb_opins_used_locally = (t_ivec **) my_malloc( | |
| num_blocks * sizeof(t_ivec *)); | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| get_class_range_for_block(iblk, &class_low, &class_high); | |
| clb_opins_used_locally[iblk] = (t_ivec *) my_malloc( | |
| type->num_class * sizeof(t_ivec)); | |
| for (iclass = 0; iclass < type->num_class; iclass++) | |
| clb_opins_used_locally[iblk][iclass].nelem = 0; | |
| for (clb_pin = 0; clb_pin < type->num_pins; clb_pin++) { | |
| // another hack to avoid I/Os, whole function needs a rethink | |
| if(type == IO_TYPE) { | |
| continue; | |
| } | |
| if ((block[iblk].nets[clb_pin] != OPEN | |
| && clb_net[block[iblk].nets[clb_pin]].num_sinks == 0) || block[iblk].nets[clb_pin] == OPEN | |
| ) { | |
| iclass = type->pin_class[clb_pin]; | |
| if(type->class_inf[iclass].type == DRIVER) { | |
| /* Check to make sure class is in same range as that assigned to block */ | |
| assert(iclass >= class_low && iclass <= class_high); | |
| clb_opins_used_locally[iblk][iclass].nelem++; | |
| } | |
| } | |
| } | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opins = clb_opins_used_locally[iblk][iclass].nelem; | |
| if (num_local_opins == 0) | |
| clb_opins_used_locally[iblk][iclass].list = NULL; | |
| else | |
| clb_opins_used_locally[iblk][iclass].list = (int *) my_malloc( | |
| num_local_opins * sizeof(int)); | |
| } | |
| } | |
| return (clb_opins_used_locally); | |
| } | |
| void free_trace_structs(void) { | |
| /*the trace lists are only freed after use by the timing-driven placer */ | |
| /*Do not free them after use by the router, since stats, and draw */ | |
| /*routines use the trace values */ | |
| int i; | |
| for (i = 0; i < num_nets; i++) | |
| free_traceback(i); | |
| if(trace_head) { | |
| free(trace_head); | |
| free(trace_tail); | |
| } | |
| trace_head = NULL; | |
| trace_tail = NULL; | |
| } | |
| void free_route_structs() { | |
| /* Frees the temporary storage needed only during the routing. The * | |
| * final routing result is not freed. */ | |
| if(heap != NULL) { | |
| free(heap + 1); | |
| } | |
| if(route_bb != NULL) { | |
| free(route_bb); | |
| } | |
| heap = NULL; /* Defensive coding: crash hard if I use these. */ | |
| route_bb = NULL; | |
| /*free the memory chunks that were used by heap and linked f pointer */ | |
| free_chunk_memory(&heap_ch); | |
| free_chunk_memory(&linked_f_pointer_ch); | |
| heap_free_head = NULL; | |
| linked_f_pointer_free_head = NULL; | |
| } | |
| void free_saved_routing(struct s_trace **best_routing, | |
| t_ivec ** saved_clb_opins_used_locally) { | |
| /* Frees the data structures needed to save a routing. */ | |
| int i; | |
| free(best_routing); | |
| for (i = 0; i < num_blocks; i++) { | |
| free_ivec_vector(saved_clb_opins_used_locally[i], 0, | |
| block[i].type->num_class - 1); | |
| } | |
| free(saved_clb_opins_used_locally); | |
| } | |
| void alloc_and_load_rr_node_route_structs(void) { | |
| /* Allocates some extra information about each rr_node that is used only * | |
| * during routing. */ | |
| int inode; | |
| if (rr_node_route_inf != NULL) { | |
| vpr_printf(TIO_MESSAGE_ERROR, "in alloc_and_load_rr_node_route_structs: old rr_node_route_inf array exists.\n"); | |
| exit(1); | |
| } | |
| rr_node_route_inf = (t_rr_node_route_inf *) my_malloc(num_rr_nodes * sizeof(t_rr_node_route_inf)); | |
| for (inode = 0; inode < num_rr_nodes; inode++) { | |
| rr_node_route_inf[inode].prev_node = NO_PREVIOUS; | |
| rr_node_route_inf[inode].prev_edge = NO_PREVIOUS; | |
| rr_node_route_inf[inode].pres_cost = 1.; | |
| rr_node_route_inf[inode].acc_cost = 1.; | |
| rr_node_route_inf[inode].path_cost = HUGE_POSITIVE_FLOAT; | |
| rr_node_route_inf[inode].target_flag = 0; | |
| } | |
| } | |
| void reset_rr_node_route_structs(void) { | |
| /* Allocates some extra information about each rr_node that is used only * | |
| * during routing. */ | |
| int inode; | |
| assert(rr_node_route_inf != NULL); | |
| for (inode = 0; inode < num_rr_nodes; inode++) { | |
| rr_node_route_inf[inode].prev_node = NO_PREVIOUS; | |
| rr_node_route_inf[inode].prev_edge = NO_PREVIOUS; | |
| rr_node_route_inf[inode].pres_cost = 1.; | |
| rr_node_route_inf[inode].acc_cost = 1.; | |
| rr_node_route_inf[inode].path_cost = HUGE_POSITIVE_FLOAT; | |
| rr_node_route_inf[inode].target_flag = 0; | |
| } | |
| } | |
| void free_rr_node_route_structs(void) { | |
| /* Frees the extra information about each rr_node that is needed only * | |
| * during routing. */ | |
| free(rr_node_route_inf); | |
| rr_node_route_inf = NULL; /* Mark as free */ | |
| } | |
| /* RESEARCH TODO: Bounding box heuristic needs to be redone for heterogeneous blocks */ | |
| static void load_route_bb(int bb_factor) { | |
| /* This routine loads the bounding box arrays used to limit the space * | |
| * searched by the maze router when routing each net. The search is * | |
| * limited to channels contained with the net bounding box expanded * | |
| * by bb_factor channels on each side. For example, if bb_factor is * | |
| * 0, the maze router must route each net within its bounding box. * | |
| * If bb_factor = nx, the maze router will search every channel in * | |
| * the FPGA if necessary. The bounding boxes returned by this routine * | |
| * are different from the ones used by the placer in that they are * | |
| * clipped to lie within (0,0) and (nx+1,ny+1) rather than (1,1) and * | |
| * (nx,ny). */ | |
| int k, xmax, ymax, xmin, ymin, x, y, inet; | |
| for (inet = 0; inet < num_nets; inet++) { | |
| x = block[clb_net[inet].node_block[0]].x; | |
| y = | |
| block[clb_net[inet].node_block[0]].y | |
| + block[clb_net[inet].node_block[0]].type->pin_height[clb_net[inet].node_block_pin[0]]; | |
| xmin = x; | |
| ymin = y; | |
| xmax = x; | |
| ymax = y; | |
| for (k = 1; k <= clb_net[inet].num_sinks; k++) { | |
| x = block[clb_net[inet].node_block[k]].x; | |
| y = | |
| block[clb_net[inet].node_block[k]].y | |
| + block[clb_net[inet].node_block[k]].type->pin_height[clb_net[inet].node_block_pin[k]]; | |
| if (x < xmin) { | |
| xmin = x; | |
| } else if (x > xmax) { | |
| xmax = x; | |
| } | |
| if (y < ymin) { | |
| ymin = y; | |
| } else if (y > ymax) { | |
| ymax = y; | |
| } | |
| } | |
| /* Want the channels on all 4 sides to be usuable, even if bb_factor = 0. */ | |
| xmin -= 1; | |
| ymin -= 1; | |
| /* Expand the net bounding box by bb_factor, then clip to the physical * | |
| * chip area. */ | |
| route_bb[inet].xmin = std::max(xmin - bb_factor, 0); | |
| route_bb[inet].xmax = std::min(xmax + bb_factor, nx + 1); | |
| route_bb[inet].ymin = std::max(ymin - bb_factor, 0); | |
| route_bb[inet].ymax = std::min(ymax + bb_factor, ny + 1); | |
| } | |
| } | |
| void add_to_mod_list(float *fptr) { | |
| /* This routine adds the floating point pointer (fptr) into a * | |
| * linked list that indicates all the pathcosts that have been * | |
| * modified thus far. */ | |
| struct s_linked_f_pointer *mod_ptr; | |
| mod_ptr = alloc_linked_f_pointer(); | |
| /* Add this element to the start of the modified list. */ | |
| mod_ptr->next = rr_modified_head; | |
| mod_ptr->fptr = fptr; | |
| rr_modified_head = mod_ptr; | |
| } | |
| static void add_to_heap(struct s_heap *hptr) { | |
| /* Adds an item to the heap, expanding the heap if necessary. */ | |
| int ito, ifrom; | |
| struct s_heap *temp_ptr; | |
| if (heap_tail > heap_size) { /* Heap is full */ | |
| heap_size *= 2; | |
| heap = (struct s_heap **) my_realloc((void *) (heap + 1), | |
| heap_size * sizeof(struct s_heap *)); | |
| heap--; /* heap goes from [1..heap_size] */ | |
| } | |
| heap[heap_tail] = hptr; | |
| ifrom = heap_tail; | |
| ito = ifrom / 2; | |
| heap_tail++; | |
| while ((ito >= 1) && (heap[ifrom]->cost < heap[ito]->cost)) { | |
| temp_ptr = heap[ito]; | |
| heap[ito] = heap[ifrom]; | |
| heap[ifrom] = temp_ptr; | |
| ifrom = ito; | |
| ito = ifrom / 2; | |
| } | |
| } | |
| /*WMF: peeking accessor :) */ | |
| boolean is_empty_heap(void) { | |
| return (boolean)(heap_tail == 1); | |
| } | |
| struct s_heap * | |
| get_heap_head(void) { | |
| /* Returns a pointer to the smallest element on the heap, or NULL if the * | |
| * heap is empty. Invalid (index == OPEN) entries on the heap are never * | |
| * returned -- they are just skipped over. */ | |
| int ito, ifrom; | |
| struct s_heap *heap_head, *temp_ptr; | |
| do { | |
| if (heap_tail == 1) { /* Empty heap. */ | |
| vpr_printf(TIO_MESSAGE_WARNING, "Empty heap occurred in get_heap_head.\n"); | |
| vpr_printf(TIO_MESSAGE_WARNING, "Some blocks are impossible to connect in this architecture.\n"); | |
| return (NULL); | |
| } | |
| heap_head = heap[1]; /* Smallest element. */ | |
| /* Now fix up the heap */ | |
| heap_tail--; | |
| heap[1] = heap[heap_tail]; | |
| ifrom = 1; | |
| ito = 2 * ifrom; | |
| while (ito < heap_tail) { | |
| if (heap[ito + 1]->cost < heap[ito]->cost) | |
| ito++; | |
| if (heap[ito]->cost > heap[ifrom]->cost) | |
| break; | |
| temp_ptr = heap[ito]; | |
| heap[ito] = heap[ifrom]; | |
| heap[ifrom] = temp_ptr; | |
| ifrom = ito; | |
| ito = 2 * ifrom; | |
| } | |
| } while (heap_head->index == OPEN); /* Get another one if invalid entry. */ | |
| return (heap_head); | |
| } | |
| void empty_heap(void) { | |
| int i; | |
| for (i = 1; i < heap_tail; i++) | |
| free_heap_data(heap[i]); | |
| heap_tail = 1; | |
| } | |
| static struct s_heap * | |
| alloc_heap_data(void) { | |
| struct s_heap *temp_ptr; | |
| if (heap_free_head == NULL) { /* No elements on the free list */ | |
| heap_free_head = (struct s_heap *) my_chunk_malloc(sizeof(struct s_heap),&heap_ch); | |
| heap_free_head->u.next = NULL; | |
| } | |
| temp_ptr = heap_free_head; | |
| heap_free_head = heap_free_head->u.next; | |
| #ifdef DEBUG | |
| num_heap_allocated++; | |
| #endif | |
| return (temp_ptr); | |
| } | |
| void free_heap_data(struct s_heap *hptr) { | |
| hptr->u.next = heap_free_head; | |
| heap_free_head = hptr; | |
| #ifdef DEBUG | |
| num_heap_allocated--; | |
| #endif | |
| } | |
| void invalidate_heap_entries(int sink_node, int ipin_node) { | |
| /* Marks all the heap entries consisting of sink_node, where it was reached * | |
| * via ipin_node, as invalid (OPEN). Used only by the breadth_first router * | |
| * and even then only in rare circumstances. */ | |
| int i; | |
| for (i = 1; i < heap_tail; i++) { | |
| if (heap[i]->index == sink_node && heap[i]->u.prev_node == ipin_node) | |
| heap[i]->index = OPEN; /* Invalid. */ | |
| } | |
| } | |
| static struct s_trace * | |
| alloc_trace_data(void) { | |
| struct s_trace *temp_ptr; | |
| if (trace_free_head == NULL) { /* No elements on the free list */ | |
| trace_free_head = (struct s_trace *) my_chunk_malloc(sizeof(struct s_trace),&trace_ch); | |
| trace_free_head->next = NULL; | |
| } | |
| temp_ptr = trace_free_head; | |
| trace_free_head = trace_free_head->next; | |
| #ifdef DEBUG | |
| num_trace_allocated++; | |
| #endif | |
| return (temp_ptr); | |
| } | |
| static void free_trace_data(struct s_trace *tptr) { | |
| /* Puts the traceback structure pointed to by tptr on the free list. */ | |
| tptr->next = trace_free_head; | |
| trace_free_head = tptr; | |
| #ifdef DEBUG | |
| num_trace_allocated--; | |
| #endif | |
| } | |
| static struct s_linked_f_pointer * | |
| alloc_linked_f_pointer(void) { | |
| /* This routine returns a linked list element with a float pointer as * | |
| * the node data. */ | |
| /*int i;*/ | |
| struct s_linked_f_pointer *temp_ptr; | |
| if (linked_f_pointer_free_head == NULL) { | |
| /* No elements on the free list */ | |
| linked_f_pointer_free_head = (struct s_linked_f_pointer *) my_chunk_malloc(sizeof(struct s_linked_f_pointer),&linked_f_pointer_ch); | |
| linked_f_pointer_free_head->next = NULL; | |
| } | |
| temp_ptr = linked_f_pointer_free_head; | |
| linked_f_pointer_free_head = linked_f_pointer_free_head->next; | |
| #ifdef DEBUG | |
| num_linked_f_pointer_allocated++; | |
| #endif | |
| return (temp_ptr); | |
| } | |
| void print_route(char *route_file) { | |
| /* Prints out the routing to file route_file. */ | |
| int inet, inode, ipin, bnum, ilow, jlow, node_block_pin, iclass; | |
| t_rr_type rr_type; | |
| struct s_trace *tptr; | |
| const char *name_type[] = { "SOURCE", "SINK", "IPIN", "OPIN", "CHANX", "CHANY", | |
| "INTRA_CLUSTER_EDGE" }; | |
| FILE *fp; | |
| fp = fopen(route_file, "w"); | |
| fprintf(fp, "Array size: %d x %d logic blocks.\n", nx, ny); | |
| fprintf(fp, "\nRouting:"); | |
| for (inet = 0; inet < num_nets; inet++) { | |
| if (clb_net[inet].is_global == FALSE) { | |
| if (clb_net[inet].num_sinks == FALSE) { | |
| fprintf(fp, "\n\nNet %d (%s)\n\n", inet, clb_net[inet].name); | |
| fprintf(fp, "\n\nUsed in local cluster only, reserved one CLB pin\n\n"); | |
| } else { | |
| fprintf(fp, "\n\nNet %d (%s)\n\n", inet, clb_net[inet].name); | |
| tptr = trace_head[inet]; | |
| while (tptr != NULL) { | |
| inode = tptr->index; | |
| rr_type = rr_node[inode].type; | |
| ilow = rr_node[inode].xlow; | |
| jlow = rr_node[inode].ylow; | |
| fprintf(fp, "Node:\t%d\t%6s (%d,%d) ", inode, name_type[rr_type], ilow, jlow); | |
| if ((ilow != rr_node[inode].xhigh) | |
| || (jlow != rr_node[inode].yhigh)) | |
| fprintf(fp, "to (%d,%d) ", rr_node[inode].xhigh, | |
| rr_node[inode].yhigh); | |
| switch (rr_type) { | |
| case IPIN: | |
| case OPIN: | |
| if (grid[ilow][jlow].type == IO_TYPE) { | |
| fprintf(fp, " Pad: "); | |
| } else { /* IO Pad. */ | |
| fprintf(fp, " Pin: "); | |
| } | |
| break; | |
| case CHANX: | |
| case CHANY: | |
| fprintf(fp, " Track: "); | |
| break; | |
| case SOURCE: | |
| case SINK: | |
| if (grid[ilow][jlow].type == IO_TYPE) { | |
| fprintf(fp, " Pad: "); | |
| } else { /* IO Pad. */ | |
| fprintf(fp, " Class: "); | |
| } | |
| break; | |
| default: | |
| vpr_printf(TIO_MESSAGE_ERROR, "in print_route: Unexpected traceback element type: %d (%s).\n", | |
| rr_type, name_type[rr_type]); | |
| exit(1); | |
| break; | |
| } | |
| fprintf(fp, "%d ", rr_node[inode].ptc_num); | |
| /* Uncomment line below if you're debugging and want to see the switch types * | |
| * used in the routing. */ | |
| /* fprintf (fp, "Switch: %d", tptr->iswitch); */ | |
| fprintf(fp, "\n"); | |
| tptr = tptr->next; | |
| } | |
| } | |
| } | |
| else { /* Global net. Never routed. */ | |
| fprintf(fp, "\n\nNet %d (%s): global net connecting:\n\n", inet, | |
| clb_net[inet].name); | |
| for (ipin = 0; ipin <= clb_net[inet].num_sinks; ipin++) { | |
| bnum = clb_net[inet].node_block[ipin]; | |
| node_block_pin = clb_net[inet].node_block_pin[ipin]; | |
| iclass = block[bnum].type->pin_class[node_block_pin]; | |
| fprintf(fp, "Block %s (#%d) at (%d, %d), Pin class %d.\n", | |
| block[bnum].name, bnum, block[bnum].x, block[bnum].y, | |
| iclass); | |
| } | |
| } | |
| } | |
| fclose(fp); | |
| if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_MEM)) { | |
| fp = my_fopen(getEchoFileName(E_ECHO_MEM), "w", 0); | |
| fprintf(fp, "\nNum_heap_allocated: %d Num_trace_allocated: %d\n", | |
| num_heap_allocated, num_trace_allocated); | |
| fprintf(fp, "Num_linked_f_pointer_allocated: %d\n", | |
| num_linked_f_pointer_allocated); | |
| fclose(fp); | |
| } | |
| } | |
| /* TODO: check if this is still necessary for speed */ | |
| void reserve_locally_used_opins(float pres_fac, boolean rip_up_local_opins, | |
| t_ivec ** clb_opins_used_locally) { | |
| /* In the past, this function implicitly allowed LUT duplication when there are free LUTs. | |
| This was especially important for logical equivalence; however, now that we have a very general | |
| logic cluster, it does not make sense to allow LUT duplication implicitly. we'll need to look into how we want to handle this case | |
| */ | |
| int iblk, num_local_opin, inode, from_node, iconn, num_edges, to_node; | |
| int iclass, ipin; | |
| float cost; | |
| struct s_heap *heap_head_ptr; | |
| t_type_ptr type; | |
| if (rip_up_local_opins) { | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opin = clb_opins_used_locally[iblk][iclass].nelem; | |
| /* Always 0 for pads and for RECEIVER (IPIN) classes */ | |
| for (ipin = 0; ipin < num_local_opin; ipin++) { | |
| inode = clb_opins_used_locally[iblk][iclass].list[ipin]; | |
| adjust_one_rr_occ_and_pcost(inode, -1, pres_fac); | |
| } | |
| } | |
| } | |
| } | |
| for (iblk = 0; iblk < num_blocks; iblk++) { | |
| type = block[iblk].type; | |
| for (iclass = 0; iclass < type->num_class; iclass++) { | |
| num_local_opin = clb_opins_used_locally[iblk][iclass].nelem; | |
| /* Always 0 for pads and for RECEIVER (IPIN) classes */ | |
| if (num_local_opin != 0) { /* Have to reserve (use) some OPINs */ | |
| from_node = rr_blk_source[iblk][iclass]; | |
| num_edges = rr_node[from_node].num_edges; | |
| for (iconn = 0; iconn < num_edges; iconn++) { | |
| to_node = rr_node[from_node].edges[iconn]; | |
| cost = get_rr_cong_cost(to_node); | |
| node_to_heap(to_node, cost, OPEN, OPEN, 0., 0.); | |
| } | |
| for (ipin = 0; ipin < num_local_opin; ipin++) { | |
| heap_head_ptr = get_heap_head(); | |
| inode = heap_head_ptr->index; | |
| adjust_one_rr_occ_and_pcost(inode, 1, pres_fac); | |
| clb_opins_used_locally[iblk][iclass].list[ipin] = inode; | |
| free_heap_data(heap_head_ptr); | |
| } | |
| empty_heap(); | |
| } | |
| } | |
| } | |
| } | |
| static void adjust_one_rr_occ_and_pcost(int inode, int add_or_sub, | |
| float pres_fac) { | |
| /* Increments or decrements (depending on add_or_sub) the occupancy of * | |
| * one rr_node, and adjusts the present cost of that node appropriately. */ | |
| int occ, capacity; | |
| occ = rr_node[inode].occ + add_or_sub; | |
| capacity = rr_node[inode].capacity; | |
| rr_node[inode].occ = occ; | |
| if (occ < capacity) { | |
| rr_node_route_inf[inode].pres_cost = 1.; | |
| } else { | |
| rr_node_route_inf[inode].pres_cost = 1. | |
| + (occ + 1 - capacity) * pres_fac; | |
| } | |
| } | |
| void free_chunk_memory_trace(void) { | |
| if (trace_ch.chunk_ptr_head != NULL) { | |
| free_chunk_memory(&trace_ch); | |
| } | |
| } | |