| #include <stdlib.h> | |
| #include <string.h> | |
| #include "hash.h" | |
| #include "util.h" | |
| struct s_hash ** | |
| alloc_hash_table(void) { | |
| /* Creates a hash table with HASHSIZE different locations (hash values). */ | |
| struct s_hash **hash_table; | |
| hash_table = (struct s_hash **) my_calloc(sizeof(struct s_hash *), | |
| HASHSIZE); | |
| return (hash_table); | |
| } | |
| void free_hash_table(struct s_hash **hash_table) { | |
| /* Frees all the storage associated with a hash table. */ | |
| int i; | |
| struct s_hash *h_ptr, *temp_ptr; | |
| for (i = 0; i < HASHSIZE; i++) { | |
| h_ptr = hash_table[i]; | |
| while (h_ptr != NULL) { | |
| free(h_ptr->name); | |
| temp_ptr = h_ptr->next; | |
| free(h_ptr); | |
| h_ptr = temp_ptr; | |
| } | |
| } | |
| free(hash_table); | |
| } | |
| struct s_hash_iterator start_hash_table_iterator(void) { | |
| /* Call this routine before you start going through all the elements in * | |
| * a hash table. It sets the internal indices to the start of the table. */ | |
| struct s_hash_iterator hash_iterator; | |
| hash_iterator.i = -1; | |
| hash_iterator.h_ptr = NULL; | |
| return (hash_iterator); | |
| } | |
| struct s_hash * | |
| get_next_hash(struct s_hash **hash_table, struct s_hash_iterator *hash_iterator) { | |
| /* Returns the next occupied hash entry, and moves the iterator structure * | |
| * forward so the next call gets the next entry. */ | |
| int i; | |
| struct s_hash *h_ptr; | |
| i = hash_iterator->i; | |
| h_ptr = hash_iterator->h_ptr; | |
| while (h_ptr == NULL) { | |
| i++; | |
| if (i >= HASHSIZE) | |
| return (NULL); /* End of table */ | |
| h_ptr = hash_table[i]; | |
| } | |
| hash_iterator->h_ptr = h_ptr->next; | |
| hash_iterator->i = i; | |
| return (h_ptr); | |
| } | |
| struct s_hash * | |
| insert_in_hash_table(struct s_hash **hash_table, char *name, | |
| int next_free_index) { | |
| /* Adds the string pointed to by name to the hash table, and returns the * | |
| * hash structure created or updated. If name is already in the hash table * | |
| * the count member of that hash element is incremented. Otherwise a new * | |
| * hash entry with a count of zero and an index of next_free_index is * | |
| * created. */ | |
| int i; | |
| struct s_hash *h_ptr, *prev_ptr; | |
| i = hash_value(name); | |
| prev_ptr = NULL; | |
| h_ptr = hash_table[i]; | |
| while (h_ptr != NULL) { | |
| if (strcmp(h_ptr->name, name) == 0) { | |
| h_ptr->count++; | |
| return (h_ptr); | |
| } | |
| prev_ptr = h_ptr; | |
| h_ptr = h_ptr->next; | |
| } | |
| /* Name string wasn't in the hash table. Add it. */ | |
| h_ptr = (struct s_hash *) my_malloc(sizeof(struct s_hash)); | |
| if (prev_ptr == NULL) { | |
| hash_table[i] = h_ptr; | |
| } else { | |
| prev_ptr->next = h_ptr; | |
| } | |
| h_ptr->next = NULL; | |
| h_ptr->index = next_free_index; | |
| h_ptr->count = 1; | |
| h_ptr->name = (char *) my_malloc((strlen(name) + 1) * sizeof(char)); | |
| strcpy(h_ptr->name, name); | |
| return (h_ptr); | |
| } | |
| struct s_hash * | |
| get_hash_entry(struct s_hash **hash_table, char *name) { | |
| /* Returns the hash entry with this name, or NULL if there is no * | |
| * corresponding entry. */ | |
| int i; | |
| struct s_hash *h_ptr; | |
| i = hash_value(name); | |
| h_ptr = hash_table[i]; | |
| while (h_ptr != NULL) { | |
| if (strcmp(h_ptr->name, name) == 0) | |
| return (h_ptr); | |
| h_ptr = h_ptr->next; | |
| } | |
| return (NULL); | |
| } | |
| int hash_value(char *name) { | |
| /* Creates a hash key from a character string. The absolute value is taken * | |
| * for the final val to compensate for long strlen that cause val to * | |
| * overflow. */ | |
| int i; | |
| int val = 0, mult = 1; | |
| i = strlen(name); | |
| for (i = strlen(name) - 1; i >= 0; i--) { | |
| val += mult * ((int) name[i]); | |
| mult *= 7; | |
| } | |
| val += (int) name[0]; | |
| val %= HASHSIZE; | |
| val = abs(val); | |
| return (val); | |
| } | |
| void get_hash_stats(struct s_hash **hash_table, char *hash_table_name){ | |
| /* Checks to see how well elements are distributed within the hash table. * | |
| * Will traverse through the hash_table and count the length of the linked * | |
| * list. Will output the hash number, the number of array elements that are * | |
| * NULL, the average number of linked lists and the maximum length of linked * | |
| * lists. */ | |
| int num_NULL = 0, total_elements = 0, max_num = 0, curr_num; | |
| double avg_num = 0; | |
| int i; | |
| struct s_hash *h_ptr; | |
| for (i = 0; i<HASHSIZE; i++){ | |
| h_ptr = hash_table[i]; | |
| curr_num = 0; | |
| if (h_ptr == NULL) | |
| num_NULL++; | |
| else{ | |
| while (h_ptr != NULL){ | |
| curr_num ++; | |
| h_ptr = h_ptr->next; | |
| } | |
| } | |
| if (curr_num > max_num) | |
| max_num = curr_num; | |
| total_elements = total_elements + curr_num; | |
| } | |
| avg_num = (float) total_elements / ((float)HASHSIZE - (float)num_NULL); | |
| vpr_printf(TIO_MESSAGE_INFO, "\n"); | |
| vpr_printf(TIO_MESSAGE_INFO, "The hash table '%s' is of size %d.\n", | |
| hash_table_name, HASHSIZE); | |
| vpr_printf(TIO_MESSAGE_INFO, "It has: %d keys that are never used; total of %d elements; an average linked-list length of %.1f; and a maximum linked-list length of %d.\n", | |
| num_NULL, total_elements, avg_num, max_num); | |
| vpr_printf(TIO_MESSAGE_INFO, "\n"); | |
| } |