| /********************************************************************* | |
| * The following code is part of the power modelling feature of VTR. | |
| * | |
| * For support: | |
| * http://code.google.com/p/vtr-verilog-to-routing/wiki/Power | |
| * | |
| * or email: | |
| * vtr.power.estimation@gmail.com | |
| * | |
| * If you are using power estimation for your researach please cite: | |
| * | |
| * Jeffrey Goeders and Steven Wilton. VersaPower: Power Estimation | |
| * for Diverse FPGA Architectures. In International Conference on | |
| * Field Programmable Technology, 2012. | |
| * | |
| ********************************************************************/ | |
| /* This file provides functions used to verify the power estimations | |
| * againt SPICE. | |
| */ | |
| /************************* INCLUDES *********************************/ | |
| #include <iostream> | |
| #include "vtr_assert.h" | |
| #include "vtr_memory.h" | |
| #include "power_callibrate.h" | |
| #include "power_components.h" | |
| #include "power_lowlevel.h" | |
| #include "power_util.h" | |
| #include "power_cmos_tech.h" | |
| #include "globals.h" | |
| /************************* FUNCTION DECLARATIONS ********************/ | |
| static char binary_not(char c); | |
| /************************* FUNCTION DEFINITIONS *********************/ | |
| /* This function prints high-activitiy and zero-activity single-cycle | |
| * energy estimations for a variety of components and sizes. | |
| */ | |
| void power_print_spice_comparison() { | |
| // | |
| t_power_usage sub_power_usage; | |
| // | |
| // float inv_sizes[5] = { 1, 8, 16, 32, 64 }; | |
| // | |
| // float buffer_sizes[3] = { 16, 25, 64 }; | |
| // | |
| unsigned int LUT_sizes[3] = { 6 }; | |
| // | |
| // float sb_buffer_sizes[6] = { 9, 9, 16, 16, 25, 25 }; | |
| // unsigned int sb_mux_sizes[6] = { 4, 8, 12, 16, 20, 25 }; | |
| // | |
| // unsigned int mux_sizes[5] = { 4, 8, 12, 16, 20 }; | |
| // | |
| unsigned int i, j; | |
| float * dens = nullptr; | |
| float * prob = nullptr; | |
| char * SRAM_bits = nullptr; | |
| int sram_idx; | |
| auto& power_ctx = g_vpr_ctx.mutable_power(); | |
| // | |
| power_ctx.solution_inf.T_crit = 1.0e-8; | |
| // | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of INV (High Activity)\n"); | |
| // for (i = 0; i < (sizeof(inv_sizes) / sizeof(float)); i++) { | |
| // power_usage_inverter(&sub_power_usage, 2, 0.5, inv_sizes[i], | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%g\t%g\n", inv_sizes[i], | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of INV (No Activity)\n"); | |
| // for (i = 0; i < (sizeof(inv_sizes) / sizeof(float)); i++) { | |
| // power_usage_inverter(&sub_power_usage, 0, 1, inv_sizes[i], | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%g\t%g\n", inv_sizes[i], | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of Mux (High Activity)\n"); | |
| // for (i = 0; i < (sizeof(mux_sizes) / sizeof(int)); i++) { | |
| // t_power_usage mux_power_usage; | |
| // | |
| // power_zero_usage(&mux_power_usage); | |
| // | |
| // dens = (float*) vtr::realloc(dens, mux_sizes[i] * sizeof(float)); | |
| // prob = (float*) vtr::realloc(prob, mux_sizes[i] * sizeof(float)); | |
| // for (j = 0; j < mux_sizes[i]; j++) { | |
| // dens[j] = 2; | |
| // prob[j] = 0.5; | |
| // } | |
| // power_usage_mux_multilevel(&mux_power_usage, | |
| // power_get_mux_arch(mux_sizes[i]), prob, dens, 0, false, | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%d\t%g\n", mux_sizes[i], | |
| // (mux_power_usage.dynamic + mux_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of Mux (No Activity)\n"); | |
| // for (i = 0; i < (sizeof(mux_sizes) / sizeof(int)); i++) { | |
| // t_power_usage mux_power_usage; | |
| // | |
| // power_zero_usage(&mux_power_usage); | |
| // | |
| // dens = (float*) vtr::realloc(dens, mux_sizes[i] * sizeof(float)); | |
| // prob = (float*) vtr::realloc(prob, mux_sizes[i] * sizeof(float)); | |
| // for (j = 0; j < mux_sizes[i]; j++) { | |
| // if (j == 0) { | |
| // dens[j] = 0; | |
| // prob[j] = 1; | |
| // } else { | |
| // dens[j] = 0; | |
| // prob[j] = 0; | |
| // } | |
| // } | |
| // power_usage_mux_multilevel(&mux_power_usage, | |
| // power_get_mux_arch(mux_sizes[i]), prob, dens, 0, false, | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%d\t%g\n", mux_sizes[i], | |
| // (mux_power_usage.dynamic + mux_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of Buffer (High Activity)\n"); | |
| // for (i = 0; i < (sizeof(buffer_sizes) / sizeof(float)); i++) { | |
| // power_usage_buffer(&sub_power_usage, buffer_sizes[i], 0.5, 2, false, | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%g\t%g\n", buffer_sizes[i], | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of Buffer (No Activity)\n"); | |
| // for (i = 0; i < (sizeof(buffer_sizes) / sizeof(float)); i++) { | |
| // power_usage_buffer(&sub_power_usage, buffer_sizes[i], 1, 0, false, | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%g\t%g\n", buffer_sizes[i], | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| fprintf(power_ctx.output->out, "Energy of LUT (High Activity)\n"); | |
| for (i = 0; i < (sizeof(LUT_sizes) / sizeof(int)); i++) { | |
| for (j = 1; j <= LUT_sizes[i]; j++) { | |
| SRAM_bits = (char*) vtr::realloc(SRAM_bits, | |
| ((1 << j) + 1) * sizeof(char)); | |
| if (j == 1) { | |
| SRAM_bits[0] = '1'; | |
| SRAM_bits[1] = '0'; | |
| } else { | |
| for (sram_idx = 0; sram_idx < (1 << (j - 1)); sram_idx++) { | |
| SRAM_bits[sram_idx + (1 << (j - 1))] = binary_not( | |
| SRAM_bits[sram_idx]); | |
| } | |
| } | |
| SRAM_bits[1 << j] = '\0'; | |
| } | |
| dens = (float*) vtr::realloc(dens, LUT_sizes[i] * sizeof(float)); | |
| prob = (float*) vtr::realloc(prob, LUT_sizes[i] * sizeof(float)); | |
| for (j = 0; j < LUT_sizes[i]; j++) { | |
| dens[j] = 1.0 / (float) LUT_sizes[i]; | |
| prob[j] = 0.5; | |
| } | |
| power_usage_lut(&sub_power_usage, LUT_sizes[i], 1.0, SRAM_bits, prob, | |
| dens, power_callib_period); | |
| t_power_usage power_usage_mux; | |
| float p[6] = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 }; | |
| float d[6] = { 1, 1, 1, 1, 1, 1 }; | |
| power_usage_mux_multilevel(&power_usage_mux, power_get_mux_arch(6, 1.0), | |
| p, d, 0, true, power_ctx.solution_inf.T_crit); | |
| power_add_usage(&sub_power_usage, &power_usage_mux); | |
| fprintf(power_ctx.output->out, "%d\t%g\n", LUT_sizes[i], | |
| power_sum_usage(&sub_power_usage)); | |
| } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of LUT (No Activity)\n"); | |
| // for (i = 0; i < (sizeof(LUT_sizes) / sizeof(int)); i++) { | |
| // for (j = 1; j <= LUT_sizes[i]; j++) { | |
| // SRAM_bits = (char*) vtr::realloc(SRAM_bits, | |
| // ((1 << j) + 1) * sizeof(char)); | |
| // if (j == 1) { | |
| // SRAM_bits[0] = '1'; | |
| // SRAM_bits[1] = '0'; | |
| // } else { | |
| // for (sram_idx = 0; sram_idx < (1 << (j - 1)); sram_idx++) { | |
| // SRAM_bits[sram_idx + (1 << (j - 1))] = binary_not( | |
| // SRAM_bits[sram_idx]); | |
| // } | |
| // } | |
| // SRAM_bits[1 << j] = '\0'; | |
| // } | |
| // | |
| // dens = (float*) vtr::realloc(dens, LUT_sizes[i] * sizeof(float)); | |
| // prob = (float*) vtr::realloc(prob, LUT_sizes[i] * sizeof(float)); | |
| // for (j = 0; j < LUT_sizes[i]; j++) { | |
| // dens[j] = 0; | |
| // prob[j] = 1; | |
| // } | |
| // power_usage_lut(&sub_power_usage, LUT_sizes[i], SRAM_bits, prob, dens, | |
| // power_callib_period); | |
| // fprintf(power_ctx.output->out, "%d\t%g\n", LUT_sizes[i], | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit * 2); | |
| // } | |
| // | |
| fprintf(power_ctx.output->out, "Energy of FF (High Activity)\n"); | |
| power_usage_ff(&sub_power_usage, 1.0, 0.5, 3, 0.5, 1, 0.5, 2, | |
| power_callib_period); | |
| fprintf(power_ctx.output->out, "%g\n", | |
| (sub_power_usage.dynamic + sub_power_usage.leakage)); | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of FF (No Activity)\n"); | |
| // power_usage_ff(&sub_power_usage, 1, 0, 1, 0, 1, 0, power_callib_period); | |
| // fprintf(power_ctx.output->out, "%g\n", | |
| // (sub_power_usage.dynamic + sub_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit * 2); | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of SB (High Activity)\n"); | |
| // for (i = 0; i < (sizeof(sb_buffer_sizes) / sizeof(float)); i++) { | |
| // t_power_usage sb_power_usage; | |
| // | |
| // power_zero_usage(&sb_power_usage); | |
| // | |
| // dens = (float*) vtr::realloc(dens, sb_mux_sizes[i] * sizeof(float)); | |
| // prob = (float*) vtr::realloc(prob, sb_mux_sizes[i] * sizeof(float)); | |
| // for (j = 0; j < sb_mux_sizes[i]; j++) { | |
| // dens[j] = 2; | |
| // prob[j] = 0.5; | |
| // } | |
| // | |
| // power_usage_mux_multilevel(&sub_power_usage, | |
| // power_get_mux_arch(sb_mux_sizes[i]), prob, dens, 0, true, | |
| // power_callib_period); | |
| // power_add_usage(&sb_power_usage, &sub_power_usage); | |
| // | |
| // power_usage_buffer(&sub_power_usage, sb_buffer_sizes[i], 0.5, 2, true, | |
| // power_callib_period); | |
| // power_add_usage(&sb_power_usage, &sub_power_usage); | |
| // | |
| // fprintf(power_ctx.output->out, "%d\t%.0f\t%g\n", sb_mux_sizes[i], | |
| // sb_buffer_sizes[i], | |
| // (sb_power_usage.dynamic + sb_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| // } | |
| // | |
| // fprintf(power_ctx.output->out, "Energy of SB (No Activity)\n"); | |
| // for (i = 0; i < (sizeof(sb_buffer_sizes) / sizeof(float)); i++) { | |
| // t_power_usage sb_power_usage; | |
| // | |
| // power_zero_usage(&sb_power_usage); | |
| // | |
| // dens = (float*) vtr::realloc(dens, sb_mux_sizes[i] * sizeof(float)); | |
| // prob = (float*) vtr::realloc(prob, sb_mux_sizes[i] * sizeof(float)); | |
| // for (j = 0; j < sb_mux_sizes[i]; j++) { | |
| // if (j == 0) { | |
| // dens[j] = 0; | |
| // prob[j] = 1; | |
| // } else { | |
| // dens[j] = 0; | |
| // prob[j] = 0; | |
| // } | |
| // } | |
| // | |
| // power_usage_mux_multilevel(&sub_power_usage, | |
| // power_get_mux_arch(sb_mux_sizes[i]), prob, dens, 0, true, | |
| // power_callib_period); | |
| // power_add_usage(&sb_power_usage, &sub_power_usage); | |
| // | |
| // power_usage_buffer(&sub_power_usage, sb_buffer_sizes[i], 1, 0, true, | |
| // power_callib_period); | |
| // power_add_usage(&sb_power_usage, &sub_power_usage); | |
| // | |
| // fprintf(power_ctx.output->out, "%d\t%.0f\t%g\n", sb_mux_sizes[i], | |
| // sb_buffer_sizes[i], | |
| // (sb_power_usage.dynamic + sb_power_usage.leakage) | |
| // * power_ctx.solution_inf.T_crit); | |
| //} | |
| //free variables | |
| free(dens); | |
| free(prob); | |
| free(SRAM_bits); | |
| } | |
| static char binary_not(char c) { | |
| if (c == '1') { | |
| return '0'; | |
| } else { | |
| return '1'; | |
| } | |
| } | |
| float power_usage_buf_for_callibration(int num_inputs, float transistor_size) { | |
| t_power_usage power_usage; | |
| VTR_ASSERT(num_inputs == 1); | |
| power_usage_buffer(&power_usage, transistor_size, 0.5, 2.0, false, | |
| power_callib_period); | |
| return power_sum_usage(&power_usage); | |
| } | |
| float power_usage_buf_levr_for_callibration(int num_inputs, | |
| float transistor_size) { | |
| t_power_usage power_usage; | |
| VTR_ASSERT(num_inputs == 1); | |
| power_usage_buffer(&power_usage, transistor_size, 0.5, 2.0, true, | |
| power_callib_period); | |
| return power_sum_usage(&power_usage); | |
| } | |
| float power_usage_mux_for_callibration(int num_inputs, float transistor_size) { | |
| t_power_usage power_usage; | |
| float * dens; | |
| float * prob; | |
| dens = (float*) vtr::malloc(num_inputs * sizeof(float)); | |
| prob = (float*) vtr::malloc(num_inputs * sizeof(float)); | |
| for (int i = 0; i < num_inputs; i++) { | |
| dens[i] = 2; | |
| prob[i] = 0.5; | |
| } | |
| power_usage_mux_multilevel(&power_usage, | |
| power_get_mux_arch(num_inputs, transistor_size), prob, dens, 0, | |
| false, power_callib_period); | |
| free(dens); | |
| free(prob); | |
| return power_sum_usage(&power_usage); | |
| } | |
| float power_usage_lut_for_callibration(int num_inputs, float transistor_size) { | |
| t_power_usage power_usage; | |
| char * SRAM_bits; | |
| float * dens; | |
| float * prob; | |
| int lut_size = num_inputs; | |
| /* Initialize an SRAM pattern that guarantees the outputs toggle with | |
| * every input toggle. | |
| */ | |
| SRAM_bits = (char*) vtr::malloc(((1 << lut_size) + 1) * sizeof(char)); | |
| for (int i = 1; i <= lut_size; i++) { | |
| if (i == 1) { | |
| SRAM_bits[0] = '1'; | |
| SRAM_bits[1] = '0'; | |
| } else { | |
| for (int sram_idx = 0; sram_idx < (1 << (i - 1)); sram_idx++) { | |
| SRAM_bits[sram_idx + (1 << (i - 1))] = binary_not( | |
| SRAM_bits[sram_idx]); | |
| } | |
| } | |
| SRAM_bits[1 << i] = '\0'; | |
| } | |
| dens = (float*) vtr::malloc(lut_size * sizeof(float)); | |
| prob = (float*) vtr::malloc(lut_size * sizeof(float)); | |
| for (int i = 0; i < lut_size; i++) { | |
| dens[i] = 1; | |
| prob[i] = 0.5; | |
| } | |
| power_usage_lut(&power_usage, lut_size, transistor_size, SRAM_bits, prob, | |
| dens, power_callib_period); | |
| free(SRAM_bits); | |
| free(dens); | |
| free(prob); | |
| return power_sum_usage(&power_usage); | |
| } | |
| float power_usage_ff_for_callibration(int num_inputs, float transistor_size) { | |
| t_power_usage power_usage; | |
| VTR_ASSERT(num_inputs == 1); | |
| power_usage_ff(&power_usage, transistor_size, 0.5, 3, 0.5, 1, 0.5, 2, | |
| power_callib_period); | |
| return power_sum_usage(&power_usage); | |
| } | |
| void power_callibrate() { | |
| /* Buffers and Mux must be done before LUT/FF */ | |
| auto& power_ctx = g_vpr_ctx.power(); | |
| power_ctx.commonly_used->component_callibration[POWER_CALLIB_COMPONENT_BUFFER]->callibrate(); | |
| power_ctx.commonly_used->component_callibration[POWER_CALLIB_COMPONENT_BUFFER_WITH_LEVR]->callibrate(); | |
| power_ctx.commonly_used->component_callibration[POWER_CALLIB_COMPONENT_MUX]->callibrate(); | |
| power_ctx.commonly_used->component_callibration[POWER_CALLIB_COMPONENT_LUT]->callibrate(); | |
| power_ctx.commonly_used->component_callibration[POWER_CALLIB_COMPONENT_FF]->callibrate(); | |
| } | |
| void power_print_callibration() { | |
| auto& power_ctx = g_vpr_ctx.power(); | |
| power_print_title(power_ctx.output->out, "Callibration Data"); | |
| for (int i = 0; i < POWER_CALLIB_COMPONENT_MAX; i++) { | |
| power_ctx.commonly_used->component_callibration[i]->print(power_ctx.output->out); | |
| } | |
| } |