blob: bc4a40ec9ff05832b46656f007d18e66fe336cdb [file] [log] [blame]
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// The following techmapping rules are intended to be run (with -max_iter 1)
// before invoking the `abc9` pass in order to transform the design into
// a format that it understands.
//
// For example, (complex) flip-flops are expected to be described as an
// combinatorial box (containing all control logic such as clock enable
// or synchronous resets) followed by a basic D-Q flop.
// Yosys will automatically analyse the simulation model (described in
// cells_sim.v) and detach any $_DFF_P_ or $_DFF_N_ cells present in
// order to extract the combinatorial control logic left behind.
// Specifically, a simulation model similar to the one below:
//
// ++===================================++
// || Sim model ||
// || /\/\/\/\ ||
// D -->>-----< > +------+ ||
// R -->>-----< Comb. > |$_DFF_| ||
// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
// || +--< > +------+ | ||
// || | \/\/\/\/ | ||
// || | | ||
// || +----------------------------+ ||
// || ||
// ++===================================++
//
// is transformed into:
//
// ++==================++
// || Comb box ||
// || ||
// || /\/\/\/\ ||
// D -->>-----< > || +------+
// R -->>-----< Comb. > || |$__ABC|
// CE -->>-----< logic >--->>-- $nextQ --| _FF_ |--+-->> Q
// $abc9_currQ +-->>-----< > || +------+ |
// | || \/\/\/\/ || |
// | || || |
// | ++==================++ |
// | |
// +----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
// the connectivity of its basic D-Q flop
// (b) a special _TECHMAP_REPLACE_.$abc9_clock wire to indicate its clock
// signal, used to extract the delay target
// (c) a special _TECHMAP_REPLACE_.$abc9_control that captures the control
// domain (which, combined with this cell type, encodes to `abc9' which
// flops may be merged together)
// (d) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire $nextQ;
FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire $nextQ;
FDRE_1 #(
.INIT(INIT),
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire $nextQ, $abc9_currQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC below
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire $nextQ, $abc9_currQ;
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC below
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR), .Y(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire $nextQ, $abc9_currQ;
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC below
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
wire $nextQ, $abc9_currQ;
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
// ^^^ Note that async
// control is not directly
// supported by abc9 but its
// behaviour is captured by
// $__ABC9_ASYNC below
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
\$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE), .Y(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDSE (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
wire $nextQ;
FDSE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
wire $nextQ;
FDSE_1 #(
.INIT(INIT),
) _TECHMAP_REPLACE_ (
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q(Q));
// Special signals
wire [0:0] _TECHMAP_REPLACE_.$abc9_clock = C;
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module RAM32X1D (
output DPO, SPO,
(* techmap_autopurge *) input D,
(* techmap_autopurge *) input WCLK,
(* techmap_autopurge *) input WE,
(* techmap_autopurge *) input A0, A1, A2, A3, A4,
(* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
);
parameter INIT = 32'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
RAM32X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4)
);
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({1'b0, A0, A1, A2, A3, A4}), .Y(DPO));
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({1'b0, A0, A1, A2, A3, A4}), .Y(SPO));
endmodule
module RAM64X1D (
output DPO, SPO,
(* techmap_autopurge *) input D,
(* techmap_autopurge *) input WCLK,
(* techmap_autopurge *) input WE,
(* techmap_autopurge *) input A0, A1, A2, A3, A4, A5,
(* techmap_autopurge *) input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
parameter INIT = 64'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
RAM64X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.D(D), .WCLK(WCLK), .WE(WE),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .A4(A4), .A5(A5),
.DPRA0(DPRA0), .DPRA1(DPRA1), .DPRA2(DPRA2), .DPRA3(DPRA3), .DPRA4(DPRA4), .DPRA5(DPRA5)
);
\$__ABC9_LUT6 dpo (.A(\$DPO ), .S({A0, A1, A2, A3, A4, A5}), .Y(DPO));
\$__ABC9_LUT6 spo (.A(\$SPO ), .S({A0, A1, A2, A3, A4, A5}), .Y(SPO));
endmodule
module RAM128X1D (
output DPO, SPO,
(* techmap_autopurge *) input D,
(* techmap_autopurge *) input WCLK,
(* techmap_autopurge *) input WE,
(* techmap_autopurge *) input [6:0] A, DPRA
);
parameter INIT = 128'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire \$DPO , \$SPO ;
RAM128X1D #(
.INIT(INIT), .IS_WCLK_INVERTED(IS_WCLK_INVERTED)
) _TECHMAP_REPLACE_ (
.DPO(\$DPO ), .SPO(\$SPO ),
.D(D), .WCLK(WCLK), .WE(WE),
.A(A),
.DPRA(DPRA)
);
\$__ABC9_LUT7 dpo (.A(\$DPO ), .S(A), .Y(DPO));
\$__ABC9_LUT7 spo (.A(\$SPO ), .S(A), .Y(SPO));
endmodule
module SRL16E (
output Q,
(* techmap_autopurge *) input A0, A1, A2, A3, CE, CLK, D
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
SRL16E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ),
.A0(A0), .A1(A1), .A2(A2), .A3(A3), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A0, A1, A2, A3, 1'b1}), .Y(Q));
endmodule
module SRLC32E (
output Q,
output Q31,
(* techmap_autopurge *) input [4:0] A,
(* techmap_autopurge *) input CE, CLK, D
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
wire \$Q ;
SRLC32E #(
.INIT(INIT), .IS_CLK_INVERTED(IS_CLK_INVERTED)
) _TECHMAP_REPLACE_ (
.Q(\$Q ), .Q31(Q31),
.A(A), .CE(CE), .CLK(CLK), .D(D)
);
\$__ABC9_LUT6 q (.A(\$Q ), .S({1'b1, A}), .Y(Q));
endmodule
//module DSP48E1 (
// (* techmap_autopurge *) output [29:0] ACOUT,
// (* techmap_autopurge *) output [17:0] BCOUT,
// (* techmap_autopurge *) output reg CARRYCASCOUT,
// (* techmap_autopurge *) output reg [3:0] CARRYOUT,
// (* techmap_autopurge *) output reg MULTSIGNOUT,
// (* techmap_autopurge *) output OVERFLOW,
// (* techmap_autopurge *) output reg signed [47:0] P,
// (* techmap_autopurge *) output PATTERNBDETECT,
// (* techmap_autopurge *) output PATTERNDETECT,
// (* techmap_autopurge *) output [47:0] PCOUT,
// (* techmap_autopurge *) output UNDERFLOW,
// (* techmap_autopurge *) input signed [29:0] A,
// (* techmap_autopurge *) input [29:0] ACIN,
// (* techmap_autopurge *) input [3:0] ALUMODE,
// (* techmap_autopurge *) input signed [17:0] B,
// (* techmap_autopurge *) input [17:0] BCIN,
// (* techmap_autopurge *) input [47:0] C,
// (* techmap_autopurge *) input CARRYCASCIN,
// (* techmap_autopurge *) input CARRYIN,
// (* techmap_autopurge *) input [2:0] CARRYINSEL,
// (* techmap_autopurge *) input CEA1,
// (* techmap_autopurge *) input CEA2,
// (* techmap_autopurge *) input CEAD,
// (* techmap_autopurge *) input CEALUMODE,
// (* techmap_autopurge *) input CEB1,
// (* techmap_autopurge *) input CEB2,
// (* techmap_autopurge *) input CEC,
// (* techmap_autopurge *) input CECARRYIN,
// (* techmap_autopurge *) input CECTRL,
// (* techmap_autopurge *) input CED,
// (* techmap_autopurge *) input CEINMODE,
// (* techmap_autopurge *) input CEM,
// (* techmap_autopurge *) input CEP,
// (* techmap_autopurge *) input CLK,
// (* techmap_autopurge *) input [24:0] D,
// (* techmap_autopurge *) input [4:0] INMODE,
// (* techmap_autopurge *) input MULTSIGNIN,
// (* techmap_autopurge *) input [6:0] OPMODE,
// (* techmap_autopurge *) input [47:0] PCIN,
// (* techmap_autopurge *) input RSTA,
// (* techmap_autopurge *) input RSTALLCARRYIN,
// (* techmap_autopurge *) input RSTALUMODE,
// (* techmap_autopurge *) input RSTB,
// (* techmap_autopurge *) input RSTC,
// (* techmap_autopurge *) input RSTCTRL,
// (* techmap_autopurge *) input RSTD,
// (* techmap_autopurge *) input RSTINMODE,
// (* techmap_autopurge *) input RSTM,
// (* techmap_autopurge *) input RSTP
//);
// parameter integer ACASCREG = 1;
// parameter integer ADREG = 1;
// parameter integer ALUMODEREG = 1;
// parameter integer AREG = 1;
// parameter AUTORESET_PATDET = "NO_RESET";
// parameter A_INPUT = "DIRECT";
// parameter integer BCASCREG = 1;
// parameter integer BREG = 1;
// parameter B_INPUT = "DIRECT";
// parameter integer CARRYINREG = 1;
// parameter integer CARRYINSELREG = 1;
// parameter integer CREG = 1;
// parameter integer DREG = 1;
// parameter integer INMODEREG = 1;
// parameter integer MREG = 1;
// parameter integer OPMODEREG = 1;
// parameter integer PREG = 1;
// parameter SEL_MASK = "MASK";
// parameter SEL_PATTERN = "PATTERN";
// parameter USE_DPORT = "FALSE";
// parameter USE_MULT = "MULTIPLY";
// parameter USE_PATTERN_DETECT = "NO_PATDET";
// parameter USE_SIMD = "ONE48";
// parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
// parameter [47:0] PATTERN = 48'h000000000000;
// parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
// parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
// parameter [0:0] IS_CLK_INVERTED = 1'b0;
// parameter [4:0] IS_INMODE_INVERTED = 5'b0;
// parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
//
// parameter _TECHMAP_CELLTYPE_ = "";
// localparam techmap_guard = (_TECHMAP_CELLTYPE_ != "");
//
//`define DSP48E1_INST(__CELL__) """
//__CELL__ #(
// .ACASCREG(ACASCREG),
// .ADREG(ADREG),
// .ALUMODEREG(ALUMODEREG),
// .AREG(AREG),
// .AUTORESET_PATDET(AUTORESET_PATDET),
// .A_INPUT(A_INPUT),
// .BCASCREG(BCASCREG),
// .BREG(BREG),
// .B_INPUT(B_INPUT),
// .CARRYINREG(CARRYINREG),
// .CARRYINSELREG(CARRYINSELREG),
// .CREG(CREG),
// .DREG(DREG),
// .INMODEREG(INMODEREG),
// .MREG(MREG),
// .OPMODEREG(OPMODEREG),
// .PREG(PREG),
// .SEL_MASK(SEL_MASK),
// .SEL_PATTERN(SEL_PATTERN),
// .USE_DPORT(USE_DPORT),
// .USE_MULT(USE_MULT),
// .USE_PATTERN_DETECT(USE_PATTERN_DETECT),
// .USE_SIMD(USE_SIMD),
// .MASK(MASK),
// .PATTERN(PATTERN),
// .IS_ALUMODE_INVERTED(IS_ALUMODE_INVERTED),
// .IS_CARRYIN_INVERTED(IS_CARRYIN_INVERTED),
// .IS_CLK_INVERTED(IS_CLK_INVERTED),
// .IS_INMODE_INVERTED(IS_INMODE_INVERTED),
// .IS_OPMODE_INVERTED(IS_OPMODE_INVERTED)
// ) _TECHMAP_REPLACE_ (
// .ACOUT(ACOUT),
// .BCOUT(BCOUT),
// .CARRYCASCOUT(CARRYCASCOUT),
// .CARRYOUT(CARRYOUT),
// .MULTSIGNOUT(MULTSIGNOUT),
// .OVERFLOW(OVERFLOW),
// .P(oP),
// .PATTERNBDETECT(PATTERNBDETECT),
// .PATTERNDETECT(PATTERNDETECT),
// .PCOUT(oPCOUT),
// .UNDERFLOW(UNDERFLOW),
// .A(iA),
// .ACIN(ACIN),
// .ALUMODE(ALUMODE),
// .B(iB),
// .BCIN(BCIN),
// .C(iC),
// .CARRYCASCIN(CARRYCASCIN),
// .CARRYIN(CARRYIN),
// .CARRYINSEL(CARRYINSEL),
// .CEA1(CEA1),
// .CEA2(CEA2),
// .CEAD(CEAD),
// .CEALUMODE(CEALUMODE),
// .CEB1(CEB1),
// .CEB2(CEB2),
// .CEC(CEC),
// .CECARRYIN(CECARRYIN),
// .CECTRL(CECTRL),
// .CED(CED),
// .CEINMODE(CEINMODE),
// .CEM(CEM),
// .CEP(CEP),
// .CLK(CLK),
// .D(iD),
// .INMODE(INMODE),
// .MULTSIGNIN(MULTSIGNIN),
// .OPMODE(OPMODE),
// .PCIN(PCIN),
// .RSTA(RSTA),
// .RSTALLCARRYIN(RSTALLCARRYIN),
// .RSTALUMODE(RSTALUMODE),
// .RSTB(RSTB),
// .RSTC(RSTC),
// .RSTCTRL(RSTCTRL),
// .RSTD(RSTD),
// .RSTINMODE(RSTINMODE),
// .RSTM(RSTM),
// .RSTP(RSTP)
// );
//"""
//
// wire [29:0] iA;
// wire [17:0] iB;
// wire [47:0] iC;
// wire [24:0] iD;
//
// wire pA, pB, pC, pD, pAD, pM, pP;
// wire [47:0] oP, mP;
// wire [47:0] oPCOUT, mPCOUT;
//
// generate
// if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin
// // Disconnect the A-input if MREG is enabled, since
// // combinatorial path is broken
// if (AREG == 0 && MREG == 0 && PREG == 0)
// assign iA = A, pA = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
// if (BREG == 0 && MREG == 0 && PREG == 0)
// assign iB = B, pB = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
// if (CREG == 0 && PREG == 0)
// assign iC = C, pC = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
// if (DREG == 0)
// assign iD = D;
// else if (techmap_guard)
// $error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
// assign pD = 1'bx;
// if (ADREG == 1 && techmap_guard)
// $error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
// assign pAD = 1'bx;
// if (PREG == 0) begin
// if (MREG == 1)
// \$__ABC9_REG rM (.Q(pM));
// else
// assign pM = 1'bx;
// assign pP = 1'bx;
// end else begin
// assign pM = 1'bx;
// \$__ABC9_REG rP (.Q(pP));
// end
//
// if (MREG == 0 && PREG == 0)
// assign mP = oP, mPCOUT = oPCOUT;
// else
// assign mP = 1'bx, mPCOUT = 1'bx;
// \$__ABC9_DSP48E1_MULT_P_MUX muxP (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
// );
// \$__ABC9_DSP48E1_MULT_PCOUT_MUX muxPCOUT (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
// );
//
// `DSP48E1_INST(\$__ABC9_DSP48E1_MULT )
// end
// else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin
// // Disconnect the A-input if MREG is enabled, since
// // combinatorial path is broken
// if (AREG == 0 && ADREG == 0 && MREG == 0 && PREG == 0)
// assign iA = A, pA = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
// if (BREG == 0 && MREG == 0 && PREG == 0)
// assign iB = B, pB = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
// if (CREG == 0 && PREG == 0)
// assign iC = C, pC = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
// if (DREG == 0 && ADREG == 0)
// assign iD = D, pD = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(25)) rD (.I(D), .O(iD), .Q(pD));
// if (PREG == 0) begin
// if (MREG == 1) begin
// assign pAD = 1'bx;
// \$__ABC9_REG rM (.Q(pM));
// end else begin
// if (ADREG == 1)
// \$__ABC9_REG rAD (.Q(pAD));
// else
// assign pAD = 1'bx;
// assign pM = 1'bx;
// end
// assign pP = 1'bx;
// end else begin
// assign pAD = 1'bx, pM = 1'bx;
// \$__ABC9_REG rP (.Q(pP));
// end
//
// if (MREG == 0 && PREG == 0)
// assign mP = oP, mPCOUT = oPCOUT;
// else
// assign mP = 1'bx, mPCOUT = 1'bx;
// \$__ABC9_DSP48E1_MULT_DPORT_P_MUX muxP (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
// );
// \$__ABC9_DSP48E1_MULT_DPORT_PCOUT_MUX muxPCOUT (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
// );
//
// `DSP48E1_INST(\$__ABC9_DSP48E1_MULT_DPORT )
// end
// else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin
// // Disconnect the A-input if MREG is enabled, since
// // combinatorial path is broken
// if (AREG == 0 && PREG == 0)
// assign iA = A, pA = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(30)) rA (.I(A), .O(iA), .Q(pA));
// if (BREG == 0 && PREG == 0)
// assign iB = B, pB = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(18)) rB (.I(B), .O(iB), .Q(pB));
// if (CREG == 0 && PREG == 0)
// assign iC = C, pC = 1'bx;
// else
// \$__ABC9_REG #(.WIDTH(48)) rC (.I(C), .O(iC), .Q(pC));
// if (DREG == 1 && techmap_guard)
// $error("Invalid DSP48E1 configuration: DREG enabled but USE_DPORT == \"FALSE\"");
// assign pD = 1'bx;
// if (ADREG == 1 && techmap_guard)
// $error("Invalid DSP48E1 configuration: ADREG enabled but USE_DPORT == \"FALSE\"");
// assign pAD = 1'bx;
// if (MREG == 1 && techmap_guard)
// $error("Invalid DSP48E1 configuration: MREG enabled but USE_MULT == \"NONE\"");
// assign pM = 1'bx;
// if (PREG == 1)
// \$__ABC9_REG rP (.Q(pP));
// else
// assign pP = 1'bx;
//
// if (MREG == 0 && PREG == 0)
// assign mP = oP, mPCOUT = oPCOUT;
// else
// assign mP = 1'bx, mPCOUT = 1'bx;
// \$__ABC9_DSP48E1_P_MUX muxP (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oP), .Mq(pM), .P(mP), .Pq(pP), .O(P)
// );
// \$__ABC9_DSP48E1_PCOUT_MUX muxPCOUT (
// .Aq(pA), .Bq(pB), .Cq(pC), .Dq(pD), .ADq(pAD), .I(oPCOUT), .Mq(pM), .P(mPCOUT), .Pq(pP), .O(PCOUT)
// );
//
// `DSP48E1_INST(\$__ABC9_DSP48E1 )
// end
// else
// $error("Invalid DSP48E1 configuration");
// endgenerate
// `undef DSP48E1_INST
//endmodule