| |
| // See Xilinx UG953 and UG474 for a description of the cell types below. |
| // http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf |
| // http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf |
| |
| module VCC(output P); |
| assign P = 1; |
| endmodule |
| |
| module GND(output G); |
| assign G = 0; |
| endmodule |
| |
| module IBUF(output O, input I); |
| assign O = I; |
| endmodule |
| |
| module OBUF(output O, input I); |
| assign O = I; |
| endmodule |
| |
| module BUFG(output O, input I); |
| assign O = I; |
| endmodule |
| |
| // module OBUFT(output O, input I, T); |
| // assign O = T ? 1'bz : I; |
| // endmodule |
| |
| // module IOBUF(inout IO, output O, input I, T); |
| // assign O = IO, IO = T ? 1'bz : I; |
| // endmodule |
| |
| module INV(output O, input I); |
| assign O = !I; |
| endmodule |
| |
| module LUT1(output O, input I0); |
| parameter [1:0] INIT = 0; |
| assign O = I0 ? INIT[1] : INIT[0]; |
| endmodule |
| |
| module LUT2(output O, input I0, I1); |
| parameter [3:0] INIT = 0; |
| wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0]; |
| assign O = I0 ? s1[1] : s1[0]; |
| endmodule |
| |
| module LUT3(output O, input I0, I1, I2); |
| parameter [7:0] INIT = 0; |
| wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0]; |
| wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; |
| assign O = I0 ? s1[1] : s1[0]; |
| endmodule |
| |
| module LUT4(output O, input I0, I1, I2, I3); |
| parameter [15:0] INIT = 0; |
| wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0]; |
| wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; |
| wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; |
| assign O = I0 ? s1[1] : s1[0]; |
| endmodule |
| |
| module LUT5(output O, input I0, I1, I2, I3, I4); |
| parameter [31:0] INIT = 0; |
| wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0]; |
| wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; |
| wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; |
| wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; |
| assign O = I0 ? s1[1] : s1[0]; |
| endmodule |
| |
| module LUT6(output O, input I0, I1, I2, I3, I4, I5); |
| parameter [63:0] INIT = 0; |
| wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; |
| wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; |
| wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; |
| wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; |
| wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; |
| assign O = I0 ? s1[1] : s1[0]; |
| endmodule |
| |
| module MUXCY(output O, input CI, DI, S); |
| assign O = S ? CI : DI; |
| endmodule |
| |
| module MUXF7(output O, input I0, I1, S); |
| assign O = S ? I1 : I0; |
| endmodule |
| |
| module MUXF8(output O, input I0, I1, S); |
| assign O = S ? I1 : I0; |
| endmodule |
| |
| module XORCY(output O, input CI, LI); |
| assign O = CI ^ LI; |
| endmodule |
| |
| module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S); |
| assign O = S ^ {CO[2:0], CI | CYINIT}; |
| assign CO[0] = S[0] ? CI | CYINIT : DI[0]; |
| assign CO[1] = S[1] ? CO[0] : DI[1]; |
| assign CO[2] = S[2] ? CO[1] : DI[2]; |
| assign CO[3] = S[3] ? CO[2] : DI[3]; |
| endmodule |
| |
| module FDRE (output reg Q, input C, CE, D, R); |
| parameter [0:0] INIT = 1'b0; |
| parameter [0:0] IS_C_INVERTED = 1'b0; |
| parameter [0:0] IS_D_INVERTED = 1'b0; |
| parameter [0:0] IS_R_INVERTED = 1'b0; |
| initial Q <= INIT; |
| generate case (|IS_C_INVERTED) |
| 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| endcase endgenerate |
| endmodule |
| |
| module FDSE (output reg Q, input C, CE, D, S); |
| parameter [0:0] INIT = 1'b0; |
| parameter [0:0] IS_C_INVERTED = 1'b0; |
| parameter [0:0] IS_D_INVERTED = 1'b0; |
| parameter [0:0] IS_S_INVERTED = 1'b0; |
| initial Q <= INIT; |
| generate case (|IS_C_INVERTED) |
| 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| endcase endgenerate |
| endmodule |
| |
| module FDCE (output reg Q, input C, CE, D, CLR); |
| parameter [0:0] INIT = 1'b0; |
| parameter [0:0] IS_C_INVERTED = 1'b0; |
| parameter [0:0] IS_D_INVERTED = 1'b0; |
| parameter [0:0] IS_CLR_INVERTED = 1'b0; |
| initial Q <= INIT; |
| generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) |
| 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; |
| endcase endgenerate |
| endmodule |
| |
| module FDPE (output reg Q, input C, CE, D, PRE); |
| parameter [0:0] INIT = 1'b0; |
| parameter [0:0] IS_C_INVERTED = 1'b0; |
| parameter [0:0] IS_D_INVERTED = 1'b0; |
| parameter [0:0] IS_PRE_INVERTED = 1'b0; |
| initial Q <= INIT; |
| generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) |
| 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; |
| endcase endgenerate |
| endmodule |
| |
| module RAM64X1D ( |
| output DPO, SPO, |
| input D, WCLK, WE, |
| input A0, A1, A2, A3, A4, A5, |
| input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 |
| ); |
| parameter INIT = 64'h0; |
| parameter IS_WCLK_INVERTED = 1'b0; |
| wire [5:0] a = {A5, A4, A3, A2, A1, A0}; |
| wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; |
| reg [63:0] mem = INIT; |
| assign SPO = mem[a]; |
| assign DPO = mem[dpra]; |
| wire clk = WCLK ^ IS_WCLK_INVERTED; |
| always @(posedge clk) if (WE) mem[a] <= D; |
| endmodule |
| |
| module RAM128X1D ( |
| output DPO, SPO, |
| input D, WCLK, WE, |
| input [6:0] A, DPRA |
| ); |
| parameter INIT = 128'h0; |
| parameter IS_WCLK_INVERTED = 1'b0; |
| reg [127:0] mem = INIT; |
| assign SPO = mem[A]; |
| assign DPO = mem[DPRA]; |
| wire clk = WCLK ^ IS_WCLK_INVERTED; |
| always @(posedge clk) if (WE) mem[A] <= D; |
| endmodule |