| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * 2019 Eddie Hung <eddie@fpgeh.com> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| // Convert negative-polarity reset to positive-polarity |
| (* techmap_celltype = "$_DFF_NN0_" *) |
| module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule |
| (* techmap_celltype = "$_DFF_PN0_" *) |
| module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule |
| (* techmap_celltype = "$_DFF_NN1_" *) |
| module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule |
| (* techmap_celltype = "$_DFF_PN1_" *) |
| module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule |
| |
| module \$__SHREG_ (input C, input D, input E, output Q); |
| parameter DEPTH = 0; |
| parameter [DEPTH-1:0] INIT = 0; |
| parameter CLKPOL = 1; |
| parameter ENPOL = 2; |
| |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q)); |
| endmodule |
| |
| module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO); |
| parameter DEPTH = 0; |
| parameter [DEPTH-1:0] INIT = 0; |
| parameter CLKPOL = 1; |
| parameter ENPOL = 2; |
| |
| // shregmap's INIT parameter shifts out LSB first; |
| // however Xilinx expects MSB first |
| function [DEPTH-1:0] brev; |
| input [DEPTH-1:0] din; |
| integer i; |
| begin |
| for (i = 0; i < DEPTH; i=i+1) |
| brev[i] = din[DEPTH-1-i]; |
| end |
| endfunction |
| localparam [DEPTH-1:0] INIT_R = brev(INIT); |
| |
| parameter _TECHMAP_CONSTMSK_L_ = 0; |
| |
| wire CE; |
| generate |
| if (ENPOL == 0) |
| assign CE = ~E; |
| else if (ENPOL == 1) |
| assign CE = E; |
| else |
| assign CE = 1'b1; |
| if (DEPTH == 1) begin |
| if (CLKPOL) |
| FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); |
| else |
| FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); |
| end else |
| if (DEPTH <= 16) begin |
| SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q)); |
| end else |
| if (DEPTH > 17 && DEPTH <= 32) begin |
| SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q)); |
| end else |
| if (DEPTH > 33 && DEPTH <= 64) begin |
| wire T0, T1, T2; |
| SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2)); |
| if (&_TECHMAP_CONSTMSK_L_) |
| assign Q = T2; |
| else |
| MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5])); |
| end else |
| if (DEPTH > 65 && DEPTH <= 96) begin |
| wire T0, T1, T2, T3, T4, T5, T6; |
| SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); |
| SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4)); |
| if (&_TECHMAP_CONSTMSK_L_) |
| assign Q = T4; |
| else |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(1'bx), .S0(L[5]), .S1(L[6]), .O(Q)); |
| end else |
| if (DEPTH > 97 && DEPTH < 128) begin |
| wire T0, T1, T2, T3, T4, T5, T6, T7, T8; |
| SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); |
| SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); |
| SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6)); |
| if (&_TECHMAP_CONSTMSK_L_) |
| assign Q = T6; |
| else |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q)); |
| end |
| else if (DEPTH == 128) begin |
| wire T0, T1, T2, T3, T4, T5, T6; |
| SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); |
| SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); |
| SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); |
| SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO)); |
| if (&_TECHMAP_CONSTMSK_L_) |
| assign Q = T6; |
| else |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T4), .I3(T6), .S0(L[5]), .S1(L[6]), .O(Q)); |
| end |
| // For fixed length, if just 1 over a convenient value, decompose |
| else if (DEPTH <= 129 && &_TECHMAP_CONSTMSK_L_) begin |
| wire T; |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(D), .L({32{1'b1}}), .E(E), .Q(T)); |
| \$__XILINX_SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(T), .L(L), .E(E), .Q(Q)); |
| end |
| // For variable length, if just 1 over a convenient value, then bump up one more |
| else if (DEPTH < 129 && ~&_TECHMAP_CONSTMSK_L_) |
| \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q)); |
| else begin |
| localparam depth0 = 128; |
| localparam num_srl128 = DEPTH / depth0; |
| localparam depthN = DEPTH % depth0; |
| wire [num_srl128 + (depthN > 0 ? 1 : 0) - 1:0] T; |
| wire [num_srl128 + (depthN > 0 ? 1 : 0) :0] S; |
| assign S[0] = D; |
| genvar i; |
| for (i = 0; i < num_srl128; i++) |
| \$__XILINX_SHREG_ #(.DEPTH(depth0), .INIT(INIT[DEPTH-1-i*depth0-:depth0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl (.C(C), .D(S[i]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[i]), .SO(S[i+1])); |
| |
| if (depthN > 0) |
| \$__XILINX_SHREG_ #(.DEPTH(depthN), .INIT(INIT[depthN-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_last (.C(C), .D(S[num_srl128]), .L(L[$clog2(depth0)-1:0]), .E(E), .Q(T[num_srl128])); |
| |
| if (&_TECHMAP_CONSTMSK_L_) |
| assign Q = T[num_srl128 + (depthN > 0 ? 1 : 0) - 1]; |
| else |
| assign Q = T[L[DEPTH-1:$clog2(depth0)]]; |
| end |
| endgenerate |
| endmodule |
| |
| `ifdef MIN_MUX_INPUTS |
| module \$__XILINX_SHIFTX (A, B, Y); |
| parameter A_SIGNED = 0; |
| parameter B_SIGNED = 0; |
| parameter A_WIDTH = 1; |
| parameter B_WIDTH = 1; |
| parameter Y_WIDTH = 1; |
| |
| input [A_WIDTH-1:0] A; |
| input [B_WIDTH-1:0] B; |
| output [Y_WIDTH-1:0] Y; |
| |
| parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0; |
| parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0; |
| parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0; |
| parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0; |
| |
| function integer A_WIDTH_trimmed; |
| input integer start; |
| begin |
| A_WIDTH_trimmed = start; |
| while (A_WIDTH_trimmed > 0 && _TECHMAP_CONSTMSK_A_[A_WIDTH_trimmed-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH_trimmed-1] === 1'bx) |
| A_WIDTH_trimmed = A_WIDTH_trimmed - 1; |
| end |
| endfunction |
| |
| generate |
| genvar i, j; |
| // Bit-blast |
| if (Y_WIDTH > 1) begin |
| for (i = 0; i < Y_WIDTH; i++) |
| \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i])); |
| end |
| // If the LSB of B is constant zero (and Y_WIDTH is 1) then |
| // we can optimise by removing every other entry from A |
| // and popping the constant zero from B |
| else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin |
| wire [(A_WIDTH+1)/2-1:0] A_i; |
| for (i = 0; i < (A_WIDTH+1)/2; i++) |
| assign A_i[i] = A[i*2]; |
| \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y)); |
| end |
| // Trim off any leading 1'bx -es in A |
| else if (_TECHMAP_CONSTMSK_A_[A_WIDTH-1] && _TECHMAP_CONSTVAL_A_[A_WIDTH-1] === 1'bx) begin |
| localparam A_WIDTH_new = A_WIDTH_trimmed(A_WIDTH-1); |
| \$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B), .Y(Y)); |
| end |
| else if (A_WIDTH < `MIN_MUX_INPUTS) begin |
| wire _TECHMAP_FAIL_ = 1; |
| end |
| else if (A_WIDTH == 2) begin |
| MUXF7 fpga_hard_mux (.I0(A[0]), .I1(A[1]), .S(B[0]), .O(Y)); |
| end |
| else if (A_WIDTH <= 4) begin |
| wire [4-1:0] Ax; |
| if (A_WIDTH == 4) |
| assign Ax = A; |
| else |
| // Rather than extend with 1'bx which gets flattened to 1'b0 |
| // causing the "don't care" status to get lost, extend with |
| // the same driver of F7B.I0 so that we can optimise F7B away |
| // later |
| assign Ax = {A[1], A}; |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(Ax[0]), .I1(Ax[2]), .I2(Ax[1]), .I3(Ax[3]), .S0(B[1]), .S1(B[0]), .O(Y)); |
| end |
| // Note that the following decompositions are 'backwards' in that |
| // the LSBs are placed on the hard resources, and the soft resources |
| // are used for MSBs. |
| // This has the effect of more effectively utilising the hard mux; |
| // take for example a 5:1 multiplexer, currently this would map as: |
| // |
| // A[0] \___ __ A[0] \__ __ |
| // A[4] / \| \ whereas the more A[1] / \| \ |
| // A[1] _____| | obvious mapping A[2] \___| | |
| // A[2] _____| |-- of MSBs to hard A[3] / | |__ |
| // A[3]______| | resources would A[4] ____| | |
| // |__/ lead to: 1'bx ____| | |
| // || |__/ |
| // || || |
| // B[1:0] B[1:2] |
| // |
| // Expectation would be that the 'forward' mapping (right) is more |
| // area efficient (consider a 9:1 multiplexer using 2x4:1 multiplexers |
| // on its I0 and I1 inputs, and A[8] and 1'bx on its I2 and I3 inputs) |
| // but that the 'backwards' mapping (left) is more delay efficient |
| // since smaller LUTs are faster than wider ones. |
| else if (A_WIDTH <= 8) begin |
| wire [8-1:0] Ax = {{{8-A_WIDTH}{1'bx}}, A}; |
| wire T0 = B[2] ? Ax[4] : Ax[0]; |
| wire T1 = B[2] ? Ax[5] : Ax[1]; |
| wire T2 = B[2] ? Ax[6] : Ax[2]; |
| wire T3 = B[2] ? Ax[7] : Ax[3]; |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y)); |
| end |
| else if (A_WIDTH <= 16) begin |
| wire [16-1:0] Ax = {{{16-A_WIDTH}{1'bx}}, A}; |
| wire T0 = B[2] ? B[3] ? Ax[12] : Ax[4] |
| : B[3] ? Ax[ 8] : Ax[0]; |
| wire T1 = B[2] ? B[3] ? Ax[13] : Ax[5] |
| : B[3] ? Ax[ 9] : Ax[1]; |
| wire T2 = B[2] ? B[3] ? Ax[14] : Ax[6] |
| : B[3] ? Ax[10] : Ax[2]; |
| wire T3 = B[2] ? B[3] ? Ax[15] : Ax[7] |
| : B[3] ? Ax[11] : Ax[3]; |
| \$__XILINX_MUXF78 fpga_hard_mux (.I0(T0), .I1(T2), .I2(T1), .I3(T3), .S0(B[1]), .S1(B[0]), .O(Y)); |
| end |
| else begin |
| localparam num_mux16 = (A_WIDTH+15) / 16; |
| localparam clog2_num_mux16 = $clog2(num_mux16); |
| wire [num_mux16-1:0] T; |
| wire [num_mux16*16-1:0] Ax = {{(num_mux16*16-A_WIDTH){1'bx}}, A}; |
| for (i = 0; i < num_mux16; i++) |
| \$__XILINX_SHIFTX #( |
| .A_SIGNED(A_SIGNED), |
| .B_SIGNED(B_SIGNED), |
| .A_WIDTH(16), |
| .B_WIDTH(4), |
| .Y_WIDTH(Y_WIDTH) |
| ) fpga_mux ( |
| .A(Ax[i*16+:16]), |
| .B(B[3:0]), |
| .Y(T[i]) |
| ); |
| \$__XILINX_SHIFTX #( |
| .A_SIGNED(A_SIGNED), |
| .B_SIGNED(B_SIGNED), |
| .A_WIDTH(num_mux16), |
| .B_WIDTH(clog2_num_mux16), |
| .Y_WIDTH(Y_WIDTH) |
| ) _TECHMAP_REPLACE_ ( |
| .A(T), |
| .B(B[B_WIDTH-1-:clog2_num_mux16]), |
| .Y(Y)); |
| end |
| endgenerate |
| endmodule |
| |
| (* techmap_celltype = "$__XILINX_SHIFTX" *) |
| module _90__XILINX_SHIFTX (A, B, Y); |
| parameter A_SIGNED = 0; |
| parameter B_SIGNED = 0; |
| parameter A_WIDTH = 1; |
| parameter B_WIDTH = 1; |
| parameter Y_WIDTH = 1; |
| |
| input [A_WIDTH-1:0] A; |
| input [B_WIDTH-1:0] B; |
| output [Y_WIDTH-1:0] Y; |
| |
| \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y)); |
| endmodule |
| |
| module \$_MUX_ (A, B, S, Y); |
| input A, B, S; |
| output Y; |
| generate |
| if (`MIN_MUX_INPUTS == 2) |
| \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(2), .B_WIDTH(1), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({B,A}), .B(S), .Y(Y)); |
| else |
| wire _TECHMAP_FAIL_ = 1; |
| endgenerate |
| endmodule |
| |
| module \$_MUX4_ (A, B, C, D, S, T, Y); |
| input A, B, C, D, S, T; |
| output Y; |
| \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(4), .B_WIDTH(2), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({D,C,B,A}), .B({T,S}), .Y(Y)); |
| endmodule |
| |
| module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y); |
| input A, B, C, D, E, F, G, H, S, T, U; |
| output Y; |
| \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y)); |
| endmodule |
| |
| module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y); |
| input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V; |
| output Y; |
| \$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y)); |
| endmodule |
| `endif |
| |
| module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1); |
| output O; |
| input I0, I1, I2, I3, S0, S1; |
| wire T0, T1; |
| parameter _TECHMAP_BITS_CONNMAP_ = 0; |
| parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I0_ = 0; |
| parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I1_ = 0; |
| parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I2_ = 0; |
| parameter [_TECHMAP_BITS_CONNMAP_-1:0] _TECHMAP_CONNMAP_I3_ = 0; |
| parameter _TECHMAP_CONSTMSK_S0_ = 0; |
| parameter _TECHMAP_CONSTVAL_S0_ = 0; |
| parameter _TECHMAP_CONSTMSK_S1_ = 0; |
| parameter _TECHMAP_CONSTVAL_S1_ = 0; |
| if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1) |
| assign T0 = I1; |
| else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_) |
| assign T0 = I0; |
| else |
| MUXF7 mux7a (.I0(I0), .I1(I1), .S(S0), .O(T0)); |
| if (_TECHMAP_CONSTMSK_S0_ && _TECHMAP_CONSTVAL_S0_ === 1'b1) |
| assign T1 = I3; |
| else if (_TECHMAP_CONSTMSK_S0_ || _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_) |
| assign T1 = I2; |
| else |
| MUXF7 mux7b (.I0(I2), .I1(I3), .S(S0), .O(T1)); |
| if (_TECHMAP_CONSTMSK_S1_ && _TECHMAP_CONSTVAL_S1_ === 1'b1) |
| assign O = T1; |
| else if (_TECHMAP_CONSTMSK_S1_ || (_TECHMAP_CONNMAP_I0_ === _TECHMAP_CONNMAP_I1_ && _TECHMAP_CONNMAP_I1_ === _TECHMAP_CONNMAP_I2_ && _TECHMAP_CONNMAP_I2_ === _TECHMAP_CONNMAP_I3_)) |
| assign O = T0; |
| else |
| MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O)); |
| endmodule |