| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/yosys.h" |
| #include "kernel/satgen.h" |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| struct EquivSimpleWorker |
| { |
| Module *module; |
| const vector<Cell*> &equiv_cells; |
| Cell *equiv_cell; |
| |
| SigMap &sigmap; |
| dict<SigBit, Cell*> &bit2driver; |
| |
| ezSatPtr ez; |
| SatGen satgen; |
| int max_seq; |
| bool short_cones; |
| bool verbose; |
| |
| pool<pair<Cell*, int>> imported_cells_cache; |
| |
| EquivSimpleWorker(const vector<Cell*> &equiv_cells, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq, bool short_cones, bool verbose, bool model_undef) : |
| module(equiv_cells.front()->module), equiv_cells(equiv_cells), equiv_cell(nullptr), |
| sigmap(sigmap), bit2driver(bit2driver), satgen(ez.get(), &sigmap), max_seq(max_seq), short_cones(short_cones), verbose(verbose) |
| { |
| satgen.model_undef = model_undef; |
| } |
| |
| bool find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, Cell *cell) |
| { |
| if (cells_cone.count(cell)) |
| return false; |
| |
| cells_cone.insert(cell); |
| |
| if (cells_stop.count(cell)) |
| return true; |
| |
| for (auto &conn : cell->connections()) |
| if (yosys_celltypes.cell_input(cell->type, conn.first)) |
| for (auto bit : sigmap(conn.second)) { |
| if (cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_", "$ff", "$_FF_")) { |
| if (!conn.first.in("\\CLK", "\\C")) |
| next_seed.insert(bit); |
| } else |
| find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit); |
| } |
| return false; |
| } |
| |
| void find_input_cone(pool<SigBit> &next_seed, pool<Cell*> &cells_cone, pool<SigBit> &bits_cone, const pool<Cell*> &cells_stop, const pool<SigBit> &bits_stop, pool<SigBit> *input_bits, SigBit bit) |
| { |
| if (bits_cone.count(bit)) |
| return; |
| |
| bits_cone.insert(bit); |
| |
| if (bits_stop.count(bit)) { |
| if (input_bits != nullptr) input_bits->insert(bit); |
| return; |
| } |
| |
| if (!bit2driver.count(bit)) |
| return; |
| |
| if (find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit2driver.at(bit))) |
| if (input_bits != nullptr) input_bits->insert(bit); |
| } |
| |
| bool run_cell() |
| { |
| SigBit bit_a = sigmap(equiv_cell->getPort("\\A")).as_bit(); |
| SigBit bit_b = sigmap(equiv_cell->getPort("\\B")).as_bit(); |
| int ez_context = ez->frozen_literal(); |
| |
| if (satgen.model_undef) |
| { |
| int ez_a = satgen.importSigBit(bit_a, max_seq+1); |
| int ez_b = satgen.importDefSigBit(bit_b, max_seq+1); |
| int ez_undef_a = satgen.importUndefSigBit(bit_a, max_seq+1); |
| |
| ez->assume(ez->XOR(ez_a, ez_b), ez_context); |
| ez->assume(ez->NOT(ez_undef_a), ez_context); |
| } |
| else |
| { |
| int ez_a = satgen.importSigBit(bit_a, max_seq+1); |
| int ez_b = satgen.importSigBit(bit_b, max_seq+1); |
| ez->assume(ez->XOR(ez_a, ez_b), ez_context); |
| } |
| |
| pool<SigBit> seed_a = { bit_a }; |
| pool<SigBit> seed_b = { bit_b }; |
| |
| if (verbose) { |
| log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell)); |
| log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort("\\Y"))); |
| } else { |
| log(" Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort("\\Y"))); |
| } |
| |
| int step = max_seq; |
| while (1) |
| { |
| pool<Cell*> no_stop_cells; |
| pool<SigBit> no_stop_bits; |
| |
| pool<Cell*> full_cells_cone_a, full_cells_cone_b; |
| pool<SigBit> full_bits_cone_a, full_bits_cone_b; |
| |
| pool<SigBit> next_seed_a, next_seed_b; |
| |
| for (auto bit_a : seed_a) |
| find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, nullptr, bit_a); |
| next_seed_a.clear(); |
| |
| for (auto bit_b : seed_b) |
| find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, nullptr, bit_b); |
| next_seed_b.clear(); |
| |
| pool<Cell*> short_cells_cone_a, short_cells_cone_b; |
| pool<SigBit> short_bits_cone_a, short_bits_cone_b; |
| pool<SigBit> input_bits; |
| |
| if (short_cones) |
| { |
| for (auto bit_a : seed_a) |
| find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, &input_bits, bit_a); |
| next_seed_a.swap(seed_a); |
| |
| for (auto bit_b : seed_b) |
| find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, &input_bits, bit_b); |
| next_seed_b.swap(seed_b); |
| } |
| else |
| { |
| short_cells_cone_a = full_cells_cone_a; |
| short_bits_cone_a = full_bits_cone_a; |
| next_seed_a.swap(seed_a); |
| |
| short_cells_cone_b = full_cells_cone_b; |
| short_bits_cone_b = full_bits_cone_b; |
| next_seed_b.swap(seed_b); |
| } |
| |
| pool<Cell*> problem_cells; |
| problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end()); |
| problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end()); |
| |
| if (verbose) |
| { |
| log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n", |
| GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b), |
| (GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells)); |
| #if 0 |
| for (auto cell : short_cells_cone_a) |
| log(" A-side cell: %s\n", log_id(cell)); |
| |
| for (auto cell : short_cells_cone_b) |
| log(" B-side cell: %s\n", log_id(cell)); |
| #endif |
| } |
| |
| for (auto cell : problem_cells) { |
| auto key = pair<Cell*, int>(cell, step+1); |
| if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) |
| log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type)); |
| imported_cells_cache.insert(key); |
| } |
| |
| if (satgen.model_undef) { |
| for (auto bit : input_bits) |
| ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1))); |
| } |
| |
| if (verbose) |
| log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses()); |
| |
| if (!ez->solve(ez_context)) { |
| log(verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n"); |
| equiv_cell->setPort("\\B", equiv_cell->getPort("\\A")); |
| ez->assume(ez->NOT(ez_context)); |
| return true; |
| } |
| |
| if (verbose) |
| log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step); |
| |
| if (--step < 0) { |
| if (verbose) |
| log(" Reached sequence limit.\n"); |
| break; |
| } |
| |
| if (seed_a.empty() && seed_b.empty()) { |
| if (verbose) |
| log(" No nets to continue in previous time step.\n"); |
| break; |
| } |
| |
| if (seed_a.empty()) { |
| if (verbose) |
| log(" No nets on A-side to continue in previous time step.\n"); |
| break; |
| } |
| |
| if (seed_b.empty()) { |
| if (verbose) |
| log(" No nets on B-side to continue in previous time step.\n"); |
| break; |
| } |
| |
| if (verbose) { |
| #if 0 |
| log(" Continuing analysis in previous time step with the following nets:\n"); |
| for (auto bit : seed_a) |
| log(" A: %s\n", log_signal(bit)); |
| for (auto bit : seed_b) |
| log(" B: %s\n", log_signal(bit)); |
| #else |
| log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b)); |
| #endif |
| } |
| } |
| |
| if (!verbose) |
| log(" failed.\n"); |
| |
| ez->assume(ez->NOT(ez_context)); |
| return false; |
| } |
| |
| int run() |
| { |
| if (GetSize(equiv_cells) > 1) { |
| SigSpec sig; |
| for (auto c : equiv_cells) |
| sig.append(sigmap(c->getPort("\\Y"))); |
| log(" Grouping SAT models for %s:\n", log_signal(sig)); |
| } |
| |
| int counter = 0; |
| for (auto c : equiv_cells) { |
| equiv_cell = c; |
| if (run_cell()) |
| counter++; |
| } |
| return counter; |
| } |
| |
| }; |
| |
| struct EquivSimplePass : public Pass { |
| EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" equiv_simple [options] [selection]\n"); |
| log("\n"); |
| log("This command tries to prove $equiv cells using a simple direct SAT approach.\n"); |
| log("\n"); |
| log(" -v\n"); |
| log(" verbose output\n"); |
| log("\n"); |
| log(" -undef\n"); |
| log(" enable modelling of undef states\n"); |
| log("\n"); |
| log(" -short\n"); |
| log(" create shorter input cones that stop at shared nodes. This yields\n"); |
| log(" simpler SAT problems but sometimes fails to prove equivalence.\n"); |
| log("\n"); |
| log(" -nogroup\n"); |
| log(" disabling grouping of $equiv cells by output wire\n"); |
| log("\n"); |
| log(" -seq <N>\n"); |
| log(" the max. number of time steps to be considered (default = 1)\n"); |
| log("\n"); |
| } |
| void execute(std::vector<std::string> args, Design *design) YS_OVERRIDE |
| { |
| bool verbose = false, short_cones = false, model_undef = false, nogroup = false; |
| int success_counter = 0; |
| int max_seq = 1; |
| |
| log_header(design, "Executing EQUIV_SIMPLE pass.\n"); |
| |
| size_t argidx; |
| for (argidx = 1; argidx < args.size(); argidx++) { |
| if (args[argidx] == "-v") { |
| verbose = true; |
| continue; |
| } |
| if (args[argidx] == "-short") { |
| short_cones = true; |
| continue; |
| } |
| if (args[argidx] == "-undef") { |
| model_undef = true; |
| continue; |
| } |
| if (args[argidx] == "-nogroup") { |
| nogroup = true; |
| continue; |
| } |
| if (args[argidx] == "-seq" && argidx+1 < args.size()) { |
| max_seq = atoi(args[++argidx].c_str()); |
| continue; |
| } |
| break; |
| } |
| extra_args(args, argidx, design); |
| |
| CellTypes ct; |
| ct.setup_internals(); |
| ct.setup_stdcells(); |
| |
| for (auto module : design->selected_modules()) |
| { |
| SigMap sigmap(module); |
| dict<SigBit, Cell*> bit2driver; |
| dict<SigBit, dict<SigBit, Cell*>> unproven_equiv_cells; |
| int unproven_cells_counter = 0; |
| |
| for (auto cell : module->selected_cells()) |
| if (cell->type == "$equiv" && cell->getPort("\\A") != cell->getPort("\\B")) { |
| auto bit = sigmap(cell->getPort("\\Y").as_bit()); |
| auto bit_group = bit; |
| if (!nogroup && bit_group.wire) |
| bit_group.offset = 0; |
| unproven_equiv_cells[bit_group][bit] = cell; |
| unproven_cells_counter++; |
| } |
| |
| if (unproven_equiv_cells.empty()) |
| continue; |
| |
| log("Found %d unproven $equiv cells (%d groups) in %s:\n", |
| unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module)); |
| |
| for (auto cell : module->cells()) { |
| if (!ct.cell_known(cell->type) && !cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_", "$ff", "$_FF_")) |
| continue; |
| for (auto &conn : cell->connections()) |
| if (yosys_celltypes.cell_output(cell->type, conn.first)) |
| for (auto bit : sigmap(conn.second)) |
| bit2driver[bit] = cell; |
| } |
| |
| unproven_equiv_cells.sort(); |
| for (auto it : unproven_equiv_cells) |
| { |
| it.second.sort(); |
| |
| vector<Cell*> cells; |
| for (auto it2 : it.second) |
| cells.push_back(it2.second); |
| |
| EquivSimpleWorker worker(cells, sigmap, bit2driver, max_seq, short_cones, verbose, model_undef); |
| success_counter += worker.run(); |
| } |
| } |
| |
| log("Proved %d previously unproven $equiv cells.\n", success_counter); |
| } |
| } EquivSimplePass; |
| |
| PRIVATE_NAMESPACE_END |