| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/yosys.h" |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| struct rules_t |
| { |
| struct portinfo_t { |
| int group, index, dupidx; |
| int wrmode, enable, transp, clocks, clkpol; |
| |
| SigBit sig_clock; |
| SigSpec sig_addr, sig_data, sig_en; |
| bool effective_clkpol; |
| bool make_transp; |
| bool make_outreg; |
| int mapped_port; |
| }; |
| |
| struct bram_t { |
| IdString name; |
| int variant; |
| |
| int groups, abits, dbits, init; |
| vector<int> ports, wrmode, enable, transp, clocks, clkpol; |
| |
| void dump_config() const |
| { |
| log(" bram %s # variant %d\n", log_id(name), variant); |
| log(" init %d\n", init); |
| log(" abits %d\n", abits); |
| log(" dbits %d\n", dbits); |
| log(" groups %d\n", groups); |
| |
| log(" ports "); for (int v : ports) log("%4d", v); log("\n"); |
| log(" wrmode"); for (int v : wrmode) log("%4d", v); log("\n"); |
| log(" enable"); for (int v : enable) log("%4d", v); log("\n"); |
| log(" transp"); for (int v : transp) log("%4d", v); log("\n"); |
| log(" clocks"); for (int v : clocks) log("%4d", v); log("\n"); |
| log(" clkpol"); for (int v : clkpol) log("%4d", v); log("\n"); |
| log(" endbram\n"); |
| } |
| |
| void check_vectors() const |
| { |
| if (groups != GetSize(ports)) log_error("Bram %s variant %d has %d groups but only %d entries in 'ports'.\n", log_id(name), variant, groups, GetSize(ports)); |
| if (groups != GetSize(wrmode)) log_error("Bram %s variant %d has %d groups but only %d entries in 'wrmode'.\n", log_id(name), variant, groups, GetSize(wrmode)); |
| if (groups != GetSize(enable)) log_error("Bram %s variant %d has %d groups but only %d entries in 'enable'.\n", log_id(name), variant, groups, GetSize(enable)); |
| if (groups != GetSize(transp)) log_error("Bram %s variant %d has %d groups but only %d entries in 'transp'.\n", log_id(name), variant, groups, GetSize(transp)); |
| if (groups != GetSize(clocks)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clocks'.\n", log_id(name), variant, groups, GetSize(clocks)); |
| if (groups != GetSize(clkpol)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clkpol'.\n", log_id(name), variant, groups, GetSize(clkpol)); |
| |
| int group = 0; |
| for (auto e : enable) |
| if (e > dbits) log_error("Bram %s variant %d group %d has %d enable bits but only %d dbits.\n", log_id(name), variant, group, e, dbits); |
| } |
| |
| vector<portinfo_t> make_portinfos() const |
| { |
| vector<portinfo_t> portinfos; |
| for (int i = 0; i < groups; i++) |
| for (int j = 0; j < ports[i]; j++) { |
| portinfo_t pi; |
| pi.group = i; |
| pi.index = j; |
| pi.dupidx = 0; |
| pi.wrmode = wrmode[i]; |
| pi.enable = enable[i]; |
| pi.transp = transp[i]; |
| pi.clocks = clocks[i]; |
| pi.clkpol = clkpol[i]; |
| pi.mapped_port = -1; |
| pi.make_transp = false; |
| pi.make_outreg = false; |
| pi.effective_clkpol = false; |
| portinfos.push_back(pi); |
| } |
| return portinfos; |
| } |
| |
| void find_variant_params(dict<IdString, Const> &variant_params, const bram_t &other) const |
| { |
| log_assert(name == other.name); |
| |
| if (groups != other.groups) |
| log_error("Bram %s variants %d and %d have different values for 'groups'.\n", log_id(name), variant, other.variant); |
| |
| if (abits != other.abits) |
| variant_params["\\CFG_ABITS"] = abits; |
| if (dbits != other.dbits) |
| variant_params["\\CFG_DBITS"] = dbits; |
| if (init != other.init) |
| variant_params["\\CFG_INIT"] = init; |
| |
| for (int i = 0; i < groups; i++) |
| { |
| if (ports[i] != other.ports[i]) |
| log_error("Bram %s variants %d and %d have different number of %c-ports.\n", log_id(name), variant, other.variant, 'A'+i); |
| if (wrmode[i] != other.wrmode[i]) |
| variant_params[stringf("\\CFG_WRMODE_%c", 'A' + i)] = wrmode[i]; |
| if (enable[i] != other.enable[i]) |
| variant_params[stringf("\\CFG_ENABLE_%c", 'A' + i)] = enable[i]; |
| if (transp[i] != other.transp[i]) |
| variant_params[stringf("\\CFG_TRANSP_%c", 'A' + i)] = transp[i]; |
| if (clocks[i] != other.clocks[i]) |
| variant_params[stringf("\\CFG_CLOCKS_%c", 'A' + i)] = clocks[i]; |
| if (clkpol[i] != other.clkpol[i]) |
| variant_params[stringf("\\CFG_CLKPOL_%c", 'A' + i)] = clkpol[i]; |
| } |
| } |
| }; |
| |
| struct match_t { |
| IdString name; |
| dict<string, int> min_limits, max_limits; |
| bool or_next_if_better, make_transp, make_outreg; |
| char shuffle_enable; |
| }; |
| |
| dict<IdString, vector<bram_t>> brams; |
| vector<match_t> matches; |
| |
| std::ifstream infile; |
| vector<string> tokens; |
| vector<string> labels; |
| int linecount; |
| |
| void syntax_error() |
| { |
| if (tokens.empty()) |
| log_error("Unexpected end of rules file in line %d.\n", linecount); |
| log_error("Syntax error in rules file line %d.\n", linecount); |
| } |
| |
| bool next_line() |
| { |
| string line; |
| while (std::getline(infile, line)) { |
| tokens.clear(); |
| labels.clear(); |
| linecount++; |
| for (string tok = next_token(line); !tok.empty(); tok = next_token(line)) { |
| if (tok[0] == '@') { |
| labels.push_back(tok.substr(1)); |
| continue; |
| } |
| if (tok[0] == '#') |
| break; |
| tokens.push_back(tok); |
| } |
| if (!tokens.empty()) |
| return true; |
| } |
| return false; |
| } |
| |
| bool parse_single_int(const char *stmt, int &value) |
| { |
| if (GetSize(tokens) == 2 && tokens[0] == stmt) { |
| value = atoi(tokens[1].c_str()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool parse_int_vect(const char *stmt, vector<int> &value) |
| { |
| if (GetSize(tokens) >= 2 && tokens[0] == stmt) { |
| value.resize(GetSize(tokens)-1); |
| for (int i = 1; i < GetSize(tokens); i++) |
| value[i-1] = atoi(tokens[i].c_str()); |
| return true; |
| } |
| return false; |
| } |
| |
| void parse_bram() |
| { |
| IdString bram_name = RTLIL::escape_id(tokens[1]); |
| |
| if (GetSize(tokens) != 2) |
| syntax_error(); |
| |
| vector<vector<string>> lines_nolabels; |
| std::map<string, vector<vector<string>>> lines_labels; |
| |
| while (next_line()) |
| { |
| if (GetSize(tokens) == 1 && tokens[0] == "endbram") |
| break; |
| if (labels.empty()) |
| lines_nolabels.push_back(tokens); |
| for (auto lab : labels) |
| lines_labels[lab].push_back(tokens); |
| } |
| |
| std::map<string, vector<vector<string>>> variant_lines; |
| |
| if (lines_labels.empty()) |
| variant_lines[""] = lines_nolabels; |
| for (auto &it : lines_labels) { |
| variant_lines[it.first] = lines_nolabels; |
| variant_lines[it.first].insert(variant_lines[it.first].end(), it.second.begin(), it.second.end()); |
| } |
| |
| for (auto &it : variant_lines) |
| { |
| bram_t data; |
| data.name = bram_name; |
| data.variant = GetSize(brams[data.name]) + 1; |
| data.groups = 0; |
| data.abits = 0; |
| data.dbits = 0; |
| data.init = 0; |
| |
| for (auto &line_tokens : it.second) |
| { |
| tokens = line_tokens; |
| |
| if (parse_single_int("groups", data.groups)) |
| continue; |
| |
| if (parse_single_int("abits", data.abits)) |
| continue; |
| |
| if (parse_single_int("dbits", data.dbits)) |
| continue; |
| |
| if (parse_single_int("init", data.init)) |
| continue; |
| |
| if (parse_int_vect("ports", data.ports)) |
| continue; |
| |
| if (parse_int_vect("wrmode", data.wrmode)) |
| continue; |
| |
| if (parse_int_vect("enable", data.enable)) |
| continue; |
| |
| if (parse_int_vect("transp", data.transp)) |
| continue; |
| |
| if (parse_int_vect("clocks", data.clocks)) |
| continue; |
| |
| if (parse_int_vect("clkpol", data.clkpol)) |
| continue; |
| |
| syntax_error(); |
| } |
| |
| data.check_vectors(); |
| brams[data.name].push_back(data); |
| } |
| } |
| |
| void parse_match() |
| { |
| if (GetSize(tokens) != 2) |
| syntax_error(); |
| |
| match_t data; |
| data.name = RTLIL::escape_id(tokens[1]); |
| data.or_next_if_better = false; |
| data.make_transp = false; |
| data.make_outreg = false; |
| data.shuffle_enable = 0; |
| |
| while (next_line()) |
| { |
| if (!labels.empty()) |
| syntax_error(); |
| |
| if (GetSize(tokens) == 1 && tokens[0] == "endmatch") { |
| matches.push_back(data); |
| break; |
| } |
| |
| if (GetSize(tokens) == 3 && tokens[0] == "min") { |
| data.min_limits[tokens[1]] = atoi(tokens[2].c_str()); |
| continue; |
| } |
| |
| if (GetSize(tokens) == 3 && tokens[0] == "max") { |
| data.max_limits[tokens[1]] = atoi(tokens[2].c_str()); |
| continue; |
| } |
| |
| if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable" && GetSize(tokens[1]) == 1 && 'A' <= tokens[1][0] && tokens[1][0] <= 'Z') { |
| data.shuffle_enable = tokens[1][0]; |
| continue; |
| } |
| |
| if (GetSize(tokens) == 1 && tokens[0] == "make_transp") { |
| data.make_transp = true; |
| continue; |
| } |
| |
| if (GetSize(tokens) == 1 && tokens[0] == "make_outreg") { |
| data.make_transp = true; |
| data.make_outreg = true; |
| continue; |
| } |
| |
| if (GetSize(tokens) == 1 && tokens[0] == "or_next_if_better") { |
| data.or_next_if_better = true; |
| continue; |
| } |
| |
| syntax_error(); |
| } |
| } |
| |
| void parse(string filename) |
| { |
| rewrite_filename(filename); |
| infile.open(filename); |
| linecount = 0; |
| |
| if (infile.fail()) |
| log_error("Can't open rules file `%s'.\n", filename.c_str()); |
| |
| while (next_line()) |
| { |
| if (!labels.empty()) |
| syntax_error(); |
| |
| if (tokens[0] == "bram") { |
| parse_bram(); |
| continue; |
| } |
| |
| if (tokens[0] == "match") { |
| parse_match(); |
| continue; |
| } |
| |
| syntax_error(); |
| } |
| |
| infile.close(); |
| } |
| }; |
| |
| bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode) |
| { |
| Module *module = cell->module; |
| |
| auto portinfos = bram.make_portinfos(); |
| int dup_count = 1; |
| |
| pair<SigBit, bool> make_transp_clk; |
| bool enable_make_transp = false; |
| int make_transp_enbits = 0; |
| |
| dict<int, pair<SigBit, bool>> clock_domains; |
| dict<int, bool> clock_polarities; |
| dict<int, bool> read_transp; |
| pool<int> clocks_wr_ports; |
| pool<int> clkpol_wr_ports; |
| int clocks_max = 0; |
| int clkpol_max = 0; |
| int transp_max = 0; |
| |
| clock_polarities[0] = false; |
| clock_polarities[1] = true; |
| |
| for (auto &pi : portinfos) { |
| if (pi.wrmode) { |
| clocks_wr_ports.insert(pi.clocks); |
| if (pi.clkpol > 1) |
| clkpol_wr_ports.insert(pi.clkpol); |
| } |
| clocks_max = max(clocks_max, pi.clocks); |
| clkpol_max = max(clkpol_max, pi.clkpol); |
| transp_max = max(transp_max, pi.transp); |
| } |
| |
| log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant); |
| // bram.dump_config(); |
| |
| int mem_size = cell->getParam("\\SIZE").as_int(); |
| int mem_abits = cell->getParam("\\ABITS").as_int(); |
| int mem_width = cell->getParam("\\WIDTH").as_int(); |
| // int mem_offset = cell->getParam("\\OFFSET").as_int(); |
| |
| bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef(); |
| vector<Const> initdata; |
| |
| if (cell_init) { |
| Const initparam = cell->getParam("\\INIT"); |
| initdata.reserve(mem_size); |
| for (int i=0; i < mem_size; i++) |
| initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx)); |
| } |
| |
| int wr_ports = cell->getParam("\\WR_PORTS").as_int(); |
| auto wr_clken = SigSpec(cell->getParam("\\WR_CLK_ENABLE")); |
| auto wr_clkpol = SigSpec(cell->getParam("\\WR_CLK_POLARITY")); |
| wr_clken.extend_u0(wr_ports); |
| wr_clkpol.extend_u0(wr_ports); |
| |
| SigSpec wr_en = cell->getPort("\\WR_EN"); |
| SigSpec wr_clk = cell->getPort("\\WR_CLK"); |
| SigSpec wr_data = cell->getPort("\\WR_DATA"); |
| SigSpec wr_addr = cell->getPort("\\WR_ADDR"); |
| |
| int rd_ports = cell->getParam("\\RD_PORTS").as_int(); |
| auto rd_clken = SigSpec(cell->getParam("\\RD_CLK_ENABLE")); |
| auto rd_clkpol = SigSpec(cell->getParam("\\RD_CLK_POLARITY")); |
| auto rd_transp = SigSpec(cell->getParam("\\RD_TRANSPARENT")); |
| rd_clken.extend_u0(rd_ports); |
| rd_clkpol.extend_u0(rd_ports); |
| rd_transp.extend_u0(rd_ports); |
| |
| SigSpec rd_en = cell->getPort("\\RD_EN"); |
| SigSpec rd_clk = cell->getPort("\\RD_CLK"); |
| SigSpec rd_data = cell->getPort("\\RD_DATA"); |
| SigSpec rd_addr = cell->getPort("\\RD_ADDR"); |
| |
| if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0) |
| { |
| int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable; |
| log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size); |
| |
| // extract unshuffled data/enable bits |
| |
| std::vector<SigSpec> old_wr_en; |
| std::vector<SigSpec> old_wr_data; |
| std::vector<SigSpec> old_rd_data; |
| |
| for (int i = 0; i < wr_ports; i++) { |
| old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width)); |
| old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width)); |
| } |
| |
| for (int i = 0; i < rd_ports; i++) |
| old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width)); |
| |
| // analyze enable structure |
| |
| std::vector<SigSpec> en_order; |
| dict<SigSpec, vector<int>> bits_wr_en; |
| |
| for (int i = 0; i < mem_width; i++) { |
| SigSpec sig; |
| for (int j = 0; j < wr_ports; j++) |
| sig.append(old_wr_en[j][i]); |
| if (bits_wr_en.count(sig) == 0) |
| en_order.push_back(sig); |
| bits_wr_en[sig].push_back(i); |
| } |
| |
| // re-create memory ports |
| |
| std::vector<SigSpec> new_wr_en(GetSize(old_wr_en)); |
| std::vector<SigSpec> new_wr_data(GetSize(old_wr_data)); |
| std::vector<SigSpec> new_rd_data(GetSize(old_rd_data)); |
| std::vector<std::vector<State>> new_initdata; |
| std::vector<int> shuffle_map; |
| |
| if (cell_init) |
| new_initdata.resize(mem_size); |
| |
| for (auto &it : en_order) |
| { |
| auto &bits = bits_wr_en.at(it); |
| int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size; |
| int fillbits = buckets*bucket_size - GetSize(bits); |
| SigBit fillbit; |
| |
| for (int i = 0; i < GetSize(bits); i++) { |
| for (int j = 0; j < wr_ports; j++) { |
| new_wr_en[j].append(old_wr_en[j][bits[i]]); |
| new_wr_data[j].append(old_wr_data[j][bits[i]]); |
| fillbit = old_wr_en[j][bits[i]]; |
| } |
| for (int j = 0; j < rd_ports; j++) |
| new_rd_data[j].append(old_rd_data[j][bits[i]]); |
| if (cell_init) { |
| for (int j = 0; j < mem_size; j++) |
| new_initdata[j].push_back(initdata[j][bits[i]]); |
| } |
| shuffle_map.push_back(bits[i]); |
| } |
| |
| for (int i = 0; i < fillbits; i++) { |
| for (int j = 0; j < wr_ports; j++) { |
| new_wr_en[j].append(fillbit); |
| new_wr_data[j].append(State::S0); |
| } |
| for (int j = 0; j < rd_ports; j++) |
| new_rd_data[j].append(State::Sx); |
| if (cell_init) { |
| for (int j = 0; j < mem_size; j++) |
| new_initdata[j].push_back(State::Sx); |
| } |
| shuffle_map.push_back(-1); |
| } |
| } |
| |
| log(" Results of bit order shuffling:"); |
| for (int v : shuffle_map) |
| log(" %d", v); |
| log("\n"); |
| |
| // update mem_*, wr_*, and rd_* variables |
| |
| mem_width = GetSize(new_wr_en.front()); |
| wr_en = SigSpec(0, wr_ports * mem_width); |
| wr_data = SigSpec(0, wr_ports * mem_width); |
| rd_data = SigSpec(0, rd_ports * mem_width); |
| |
| for (int i = 0; i < wr_ports; i++) { |
| wr_en.replace(i*mem_width, new_wr_en[i]); |
| wr_data.replace(i*mem_width, new_wr_data[i]); |
| } |
| |
| for (int i = 0; i < rd_ports; i++) |
| rd_data.replace(i*mem_width, new_rd_data[i]); |
| |
| if (cell_init) { |
| for (int i = 0; i < mem_size; i++) |
| initdata[i] = Const(new_initdata[i]); |
| } |
| } |
| |
| // assign write ports |
| pair<SigBit, bool> wr_clkdom; |
| for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++) |
| { |
| bool clken = wr_clken[cell_port_i] == State::S1; |
| bool clkpol = wr_clkpol[cell_port_i] == State::S1; |
| SigBit clksig = wr_clk[cell_port_i]; |
| |
| pair<SigBit, bool> clkdom(clksig, clkpol); |
| if (!clken) |
| clkdom = pair<SigBit, bool>(State::S1, false); |
| wr_clkdom = clkdom; |
| log(" Write port #%d is in clock domain %s%s.\n", |
| cell_port_i, clkdom.second ? "" : "!", |
| clken ? log_signal(clkdom.first) : "~async~"); |
| |
| for (; bram_port_i < GetSize(portinfos); bram_port_i++) |
| { |
| auto &pi = portinfos[bram_port_i]; |
| make_transp_enbits = pi.enable; |
| make_transp_clk = clkdom; |
| |
| if (pi.wrmode != 1) |
| skip_bram_wport: |
| continue; |
| |
| if (clken) { |
| if (pi.clocks == 0) { |
| log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1); |
| goto skip_bram_wport; |
| } |
| if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) { |
| log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1); |
| goto skip_bram_wport; |
| } |
| if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) { |
| log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1); |
| goto skip_bram_wport; |
| } |
| } else { |
| if (pi.clocks != 0) { |
| log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1); |
| goto skip_bram_wport; |
| } |
| } |
| |
| SigSpec sig_en; |
| SigBit last_en_bit = State::S1; |
| for (int i = 0; i < mem_width; i++) { |
| if (pi.enable && i % (bram.dbits / pi.enable) == 0) { |
| last_en_bit = wr_en[i + cell_port_i*mem_width]; |
| sig_en.append(last_en_bit); |
| } |
| if (last_en_bit != wr_en[i + cell_port_i*mem_width]) { |
| log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1); |
| goto skip_bram_wport; |
| } |
| } |
| |
| log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1); |
| pi.mapped_port = cell_port_i; |
| |
| if (clken) { |
| clock_domains[pi.clocks] = clkdom; |
| clock_polarities[pi.clkpol] = clkdom.second; |
| pi.sig_clock = clkdom.first; |
| pi.effective_clkpol = clkdom.second; |
| } |
| |
| pi.sig_en = sig_en; |
| pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits); |
| pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width); |
| |
| bram_port_i++; |
| goto mapped_wr_port; |
| } |
| |
| log(" Failed to map write port #%d.\n", cell_port_i); |
| return false; |
| mapped_wr_port:; |
| } |
| |
| // housekeeping stuff for growing more read ports and restarting read port assignments |
| |
| int grow_read_ports_cursor = -1; |
| bool try_growing_more_read_ports = false; |
| auto backup_clock_domains = clock_domains; |
| auto backup_clock_polarities = clock_polarities; |
| |
| if (0) { |
| grow_read_ports:; |
| vector<rules_t::portinfo_t> new_portinfos; |
| for (auto &pi : portinfos) { |
| if (pi.wrmode == 0) { |
| pi.mapped_port = -1; |
| pi.sig_clock = SigBit(); |
| pi.sig_addr = SigSpec(); |
| pi.sig_data = SigSpec(); |
| pi.sig_en = SigSpec(); |
| pi.make_outreg = false; |
| pi.make_transp = false; |
| } |
| new_portinfos.push_back(pi); |
| if (pi.dupidx == dup_count-1) { |
| if (pi.clocks && !clocks_wr_ports[pi.clocks]) |
| pi.clocks += clocks_max; |
| if (pi.clkpol > 1 && !clkpol_wr_ports[pi.clkpol]) |
| pi.clkpol += clkpol_max; |
| if (pi.transp > 1) |
| pi.transp += transp_max; |
| pi.dupidx++; |
| new_portinfos.push_back(pi); |
| } |
| } |
| try_growing_more_read_ports = false; |
| portinfos.swap(new_portinfos); |
| clock_domains = backup_clock_domains; |
| clock_polarities = backup_clock_polarities; |
| dup_count++; |
| } |
| |
| read_transp.clear(); |
| read_transp[0] = false; |
| read_transp[1] = true; |
| |
| // assign read ports |
| |
| for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++) |
| { |
| bool clken = rd_clken[cell_port_i] == State::S1; |
| bool clkpol = rd_clkpol[cell_port_i] == State::S1; |
| bool transp = rd_transp[cell_port_i] == State::S1; |
| SigBit clksig = rd_clk[cell_port_i]; |
| |
| if (wr_ports == 0) |
| transp = false; |
| |
| pair<SigBit, bool> clkdom(clksig, clkpol); |
| if (!clken) |
| clkdom = pair<SigBit, bool>(State::S1, false); |
| |
| log(" Read port #%d is in clock domain %s%s.\n", |
| cell_port_i, clkdom.second ? "" : "!", |
| clken ? log_signal(clkdom.first) : "~async~"); |
| |
| for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++) |
| { |
| auto &pi = portinfos[bram_port_i]; |
| |
| if (pi.wrmode != 0 || pi.mapped_port >= 0) |
| skip_bram_rport: |
| continue; |
| |
| if (clken) { |
| if (pi.clocks == 0) { |
| if (match.make_outreg) { |
| pi.make_outreg = true; |
| goto skip_bram_rport_clkcheck; |
| } |
| log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) { |
| log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) { |
| log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) { |
| log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| skip_bram_rport_clkcheck: |
| if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) { |
| if (match.make_transp && wr_ports <= 1) { |
| pi.make_transp = true; |
| if (pi.clocks != 0) { |
| if (wr_ports == 1 && wr_clkdom != clkdom) { |
| log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| enable_make_transp = true; |
| } |
| } else { |
| log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| } |
| } else { |
| if (pi.clocks != 0) { |
| log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| goto skip_bram_rport; |
| } |
| } |
| |
| log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| pi.mapped_port = cell_port_i; |
| |
| if (clken) { |
| clock_domains[pi.clocks] = clkdom; |
| clock_polarities[pi.clkpol] = clkdom.second; |
| if (!pi.make_transp) |
| read_transp[pi.transp] = transp; |
| pi.sig_clock = clkdom.first; |
| pi.sig_en = rd_en[cell_port_i]; |
| pi.effective_clkpol = clkdom.second; |
| } |
| |
| pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits); |
| pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width); |
| |
| if (grow_read_ports_cursor < cell_port_i) { |
| grow_read_ports_cursor = cell_port_i; |
| try_growing_more_read_ports = true; |
| } |
| |
| goto mapped_rd_port; |
| } |
| |
| log(" Failed to map read port #%d.\n", cell_port_i); |
| if (try_growing_more_read_ports) { |
| log(" Growing more read ports by duplicating bram cells.\n"); |
| goto grow_read_ports; |
| } |
| return false; |
| mapped_rd_port:; |
| } |
| |
| // update properties and re-check conditions |
| |
| if (mode <= 1) |
| { |
| match_properties["dups"] = dup_count; |
| match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"]; |
| |
| int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits)); |
| match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits)); |
| |
| match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits); |
| match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits)); |
| match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"]; |
| |
| log(" Updated properties: dups=%d waste=%d efficiency=%d\n", |
| match_properties["dups"], match_properties["waste"], match_properties["efficiency"]); |
| |
| for (auto it : match.min_limits) { |
| if (!match_properties.count(it.first)) |
| log_error("Unknown property '%s' in match rule for bram type %s.\n", |
| it.first.c_str(), log_id(match.name)); |
| if (match_properties[it.first] >= it.second) |
| continue; |
| log(" Rule for bram type %s rejected: requirement 'min %s %d' not met.\n", |
| log_id(match.name), it.first.c_str(), it.second); |
| return false; |
| } |
| for (auto it : match.max_limits) { |
| if (!match_properties.count(it.first)) |
| log_error("Unknown property '%s' in match rule for bram type %s.\n", |
| it.first.c_str(), log_id(match.name)); |
| if (match_properties[it.first] <= it.second) |
| continue; |
| log(" Rule for bram type %s rejected: requirement 'max %s %d' not met.\n", |
| log_id(match.name), it.first.c_str(), it.second); |
| return false; |
| } |
| |
| if (mode == 1) |
| return true; |
| } |
| |
| // prepare variant parameters |
| |
| dict<IdString, Const> variant_params; |
| for (auto &other_bram : rules.brams.at(bram.name)) |
| bram.find_variant_params(variant_params, other_bram); |
| |
| // actually replace that memory cell |
| |
| dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache; |
| |
| for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++) |
| { |
| SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q; |
| vector<SigSpec> mktr_wren; |
| |
| if (enable_make_transp) { |
| mktr_wraddr = module->addWire(NEW_ID, bram.abits); |
| mktr_wrdata = module->addWire(NEW_ID, bram.dbits); |
| mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits); |
| module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second); |
| for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++) |
| mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits)); |
| } |
| |
| for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++) |
| for (int dupidx = 0; dupidx < dup_count; dupidx++) |
| { |
| Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name); |
| log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c)); |
| |
| for (auto &vp : variant_params) |
| c->setParam(vp.first, vp.second); |
| |
| if (cell_init) { |
| int init_offset = grid_a*(1 << bram.abits); |
| int init_shift = grid_d*bram.dbits; |
| int init_size = (1 << bram.abits); |
| Const initparam(State::Sx, init_size*bram.dbits); |
| for (int i = 0; i < init_size; i++) { |
| State padding = State::Sx; |
| for (int j = 0; j < bram.dbits; j++) |
| if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i])) |
| initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j]; |
| else |
| initparam[i*bram.dbits+j] = padding; |
| } |
| c->setParam("\\INIT", initparam); |
| } |
| |
| for (auto &pi : portinfos) |
| { |
| if (pi.dupidx != dupidx) |
| continue; |
| |
| string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1); |
| const char *pf = prefix.c_str(); |
| |
| if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) { |
| c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock); |
| if (pi.clkpol > 1 && pi.sig_clock.wire) |
| c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol)); |
| if (pi.transp > 1 && pi.sig_clock.wire) |
| c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp)); |
| } |
| |
| SigSpec addr_ok; |
| if (GetSize(pi.sig_addr) > bram.abits) { |
| SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits); |
| SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr)); |
| addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel); |
| } |
| |
| if (pi.enable) |
| { |
| SigSpec sig_en = pi.sig_en; |
| |
| if (pi.wrmode == 1) { |
| sig_en.extend_u0((grid_d+1) * pi.enable); |
| sig_en = sig_en.extract(grid_d * pi.enable, pi.enable); |
| } |
| |
| if (!addr_ok.empty()) |
| sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok); |
| |
| c->setPort(stringf("\\%sEN", pf), sig_en); |
| |
| if (pi.wrmode == 1 && enable_make_transp) |
| module->connect(mktr_wren[grid_a], sig_en); |
| } |
| |
| SigSpec sig_addr = pi.sig_addr; |
| sig_addr.extend_u0(bram.abits); |
| c->setPort(stringf("\\%sADDR", pf), sig_addr); |
| |
| if (pi.wrmode == 1 && enable_make_transp && grid_a == 0) |
| module->connect(mktr_wraddr, sig_addr); |
| |
| SigSpec sig_data = pi.sig_data; |
| sig_data.extend_u0((grid_d+1) * bram.dbits); |
| sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits); |
| |
| if (pi.wrmode == 1) { |
| c->setPort(stringf("\\%sDATA", pf), sig_data); |
| if (enable_make_transp && grid_a == 0) |
| module->connect(mktr_wrdata, sig_data); |
| } else { |
| SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits); |
| c->setPort(stringf("\\%sDATA", pf), bram_dout); |
| if (pi.make_outreg && pi.make_transp) { |
| log(" Moving output register to address for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| SigSpec sig_addr_q = module->addWire(NEW_ID, bram.abits); |
| module->addDff(NEW_ID, pi.sig_clock, sig_addr, sig_addr_q, pi.effective_clkpol); |
| c->setPort(stringf("\\%sADDR", pf), sig_addr_q); |
| } else if (pi.make_outreg) { |
| SigSpec bram_dout_q = module->addWire(NEW_ID, bram.dbits); |
| if (!pi.sig_en.empty()) |
| bram_dout = module->Mux(NEW_ID, bram_dout_q, bram_dout, pi.sig_en); |
| module->addDff(NEW_ID, pi.sig_clock, bram_dout, bram_dout_q, pi.effective_clkpol); |
| bram_dout = bram_dout_q; |
| } else if (pi.make_transp) { |
| log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1); |
| |
| SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits), |
| mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr)); |
| |
| SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits); |
| module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second); |
| |
| for (int i = 0; i < make_transp_enbits; i++) { |
| int en_width = bram.dbits / make_transp_enbits; |
| SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width); |
| SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width); |
| bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i])); |
| } |
| } |
| |
| for (int i = bram.dbits-1; i >= 0; i--) |
| if (sig_data[i].wire == nullptr) { |
| sig_data.remove(i); |
| bram_dout.remove(i); |
| } |
| |
| SigSpec addr_ok_q = addr_ok; |
| if ((pi.clocks || pi.make_outreg) && !addr_ok.empty()) { |
| addr_ok_q = module->addWire(NEW_ID); |
| if (!pi.sig_en.empty()) |
| addr_ok = module->Mux(NEW_ID, addr_ok_q, addr_ok, pi.sig_en); |
| module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol); |
| } |
| |
| dout_cache[sig_data].first.append(addr_ok_q); |
| dout_cache[sig_data].second.append(bram_dout); |
| } |
| } |
| } |
| } |
| |
| for (auto &it : dout_cache) |
| { |
| if (it.second.first.empty()) |
| { |
| log_assert(GetSize(it.first) == GetSize(it.second.second)); |
| module->connect(it.first, it.second.second); |
| } |
| else |
| { |
| log_assert(GetSize(it.first)*GetSize(it.second.first) == GetSize(it.second.second)); |
| module->addPmux(NEW_ID, SigSpec(State::Sx, GetSize(it.first)), it.second.second, it.second.first, it.first); |
| } |
| } |
| |
| module->remove(cell); |
| return true; |
| } |
| |
| void handle_cell(Cell *cell, const rules_t &rules) |
| { |
| log("Processing %s.%s:\n", log_id(cell->module), log_id(cell)); |
| |
| bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef(); |
| |
| dict<string, int> match_properties; |
| match_properties["words"] = cell->getParam("\\SIZE").as_int(); |
| match_properties["abits"] = cell->getParam("\\ABITS").as_int(); |
| match_properties["dbits"] = cell->getParam("\\WIDTH").as_int(); |
| match_properties["wports"] = cell->getParam("\\WR_PORTS").as_int(); |
| match_properties["rports"] = cell->getParam("\\RD_PORTS").as_int(); |
| match_properties["bits"] = match_properties["words"] * match_properties["dbits"]; |
| match_properties["ports"] = match_properties["wports"] + match_properties["rports"]; |
| |
| log(" Properties:"); |
| for (auto &it : match_properties) |
| log(" %s=%d", it.first.c_str(), it.second); |
| log("\n"); |
| |
| pool<pair<IdString, int>> failed_brams; |
| dict<pair<int, int>, tuple<int, int, int>> best_rule_cache; |
| |
| for (int i = 0; i < GetSize(rules.matches); i++) |
| { |
| auto &match = rules.matches.at(i); |
| |
| if (!rules.brams.count(rules.matches[i].name)) |
| log_error("No bram description for resource %s found!\n", log_id(rules.matches[i].name)); |
| |
| for (int vi = 0; vi < GetSize(rules.brams.at(match.name)); vi++) |
| { |
| auto &bram = rules.brams.at(match.name).at(vi); |
| bool or_next_if_better = match.or_next_if_better || vi+1 < GetSize(rules.brams.at(match.name)); |
| |
| if (failed_brams.count(pair<IdString, int>(bram.name, bram.variant))) |
| continue; |
| |
| int avail_rd_ports = 0; |
| int avail_wr_ports = 0; |
| for (int j = 0; j < bram.groups; j++) { |
| if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0) |
| avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0; |
| if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0) |
| avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0; |
| } |
| |
| log(" Checking rule #%d for bram type %s (variant %d):\n", i+1, log_id(bram.name), bram.variant); |
| log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports); |
| |
| int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1; |
| match_properties["dups"] = dups; |
| |
| log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]); |
| |
| int aover = match_properties["words"] % (1 << bram.abits); |
| int awaste = aover ? (1 << bram.abits) - aover : 0; |
| match_properties["awaste"] = awaste; |
| |
| int dover = match_properties["dbits"] % bram.dbits; |
| int dwaste = dover ? bram.dbits - dover : 0; |
| match_properties["dwaste"] = dwaste; |
| |
| int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste; |
| match_properties["bwaste"] = bwaste; |
| |
| int waste = match_properties["dups"] * bwaste; |
| match_properties["waste"] = waste; |
| |
| int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits)); |
| int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits)); |
| match_properties["efficiency"] = efficiency; |
| |
| log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n", |
| log_id(match.name), awaste, dwaste, bwaste, waste, efficiency); |
| |
| if (cell_init && bram.init == 0) { |
| log(" Rule #%d for bram type %s (variant %d) rejected: cannot be initialized.\n", |
| i+1, log_id(bram.name), bram.variant); |
| goto next_match_rule; |
| } |
| |
| for (auto it : match.min_limits) { |
| if (it.first == "waste" || it.first == "dups" || it.first == "acells" || it.first == "dcells" || it.first == "cells") |
| continue; |
| if (!match_properties.count(it.first)) |
| log_error("Unknown property '%s' in match rule for bram type %s.\n", |
| it.first.c_str(), log_id(match.name)); |
| if (match_properties[it.first] >= it.second) |
| continue; |
| log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'min %s %d' not met.\n", |
| i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second); |
| goto next_match_rule; |
| } |
| |
| for (auto it : match.max_limits) { |
| if (it.first == "acells" || it.first == "dcells" || it.first == "cells") |
| continue; |
| if (!match_properties.count(it.first)) |
| log_error("Unknown property '%s' in match rule for bram type %s.\n", |
| it.first.c_str(), log_id(match.name)); |
| if (match_properties[it.first] <= it.second) |
| continue; |
| log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'max %s %d' not met.\n", |
| i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second); |
| goto next_match_rule; |
| } |
| |
| log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant); |
| |
| if (or_next_if_better || !best_rule_cache.empty()) |
| { |
| if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name))) |
| log_error("Found 'or_next_if_better' in last match rule.\n"); |
| |
| if (!replace_cell(cell, rules, bram, match, match_properties, 1)) { |
| log(" Mapping to bram type %s failed.\n", log_id(match.name)); |
| failed_brams.insert(pair<IdString, int>(bram.name, bram.variant)); |
| goto next_match_rule; |
| } |
| |
| log(" Storing for later selection.\n"); |
| best_rule_cache[pair<int, int>(i, vi)] = tuple<int, int, int>(match_properties["efficiency"], -match_properties["cells"], -match_properties["acells"]); |
| |
| next_match_rule: |
| if (or_next_if_better || best_rule_cache.empty()) |
| continue; |
| |
| log(" Selecting best of %d rules:\n", GetSize(best_rule_cache)); |
| pair<int, int> best_rule = best_rule_cache.begin()->first; |
| |
| for (auto &it : best_rule_cache) { |
| if (it.second > best_rule_cache[best_rule]) |
| best_rule = it.first; |
| log(" Efficiency for rule %d.%d: efficiency=%d, cells=%d, acells=%d\n", it.first.first+1, it.first.second+1, |
| std::get<0>(it.second), -std::get<1>(it.second), -std::get<2>(it.second)); |
| } |
| |
| log(" Selected rule %d.%d with efficiency %d.\n", best_rule.first+1, best_rule.second+1, std::get<0>(best_rule_cache[best_rule])); |
| best_rule_cache.clear(); |
| |
| auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second); |
| if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2)) |
| log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant); |
| return; |
| } |
| |
| if (!replace_cell(cell, rules, bram, match, match_properties, 0)) { |
| log(" Mapping to bram type %s failed.\n", log_id(match.name)); |
| failed_brams.insert(pair<IdString, int>(bram.name, bram.variant)); |
| goto next_match_rule; |
| } |
| return; |
| } |
| } |
| |
| log(" No acceptable bram resources found.\n"); |
| } |
| |
| struct MemoryBramPass : public Pass { |
| MemoryBramPass() : Pass("memory_bram", "map memories to block rams") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" memory_bram -rules <rule_file> [selection]\n"); |
| log("\n"); |
| log("This pass converts the multi-port $mem memory cells into block ram instances.\n"); |
| log("The given rules file describes the available resources and how they should be\n"); |
| log("used.\n"); |
| log("\n"); |
| log("The rules file contains a set of block ram description and a sequence of match\n"); |
| log("rules. A block ram description looks like this:\n"); |
| log("\n"); |
| log(" bram RAMB1024X32 # name of BRAM cell\n"); |
| log(" init 1 # set to '1' if BRAM can be initialized\n"); |
| log(" abits 10 # number of address bits\n"); |
| log(" dbits 32 # number of data bits\n"); |
| log(" groups 2 # number of port groups\n"); |
| log(" ports 1 1 # number of ports in each group\n"); |
| log(" wrmode 1 0 # set to '1' if this groups is write ports\n"); |
| log(" enable 4 1 # number of enable bits\n"); |
| log(" transp 0 2 # transparent (for read ports)\n"); |
| log(" clocks 1 2 # clock configuration\n"); |
| log(" clkpol 2 2 # clock polarity configuration\n"); |
| log(" endbram\n"); |
| log("\n"); |
| log("For the option 'transp' the value 0 means non-transparent, 1 means transparent\n"); |
| log("and a value greater than 1 means configurable. All groups with the same\n"); |
| log("value greater than 1 share the same configuration bit.\n"); |
| log("\n"); |
| log("For the option 'clocks' the value 0 means non-clocked, and a value greater\n"); |
| log("than 0 means clocked. All groups with the same value share the same clock\n"); |
| log("signal.\n"); |
| log("\n"); |
| log("For the option 'clkpol' the value 0 means negative edge, 1 means positive edge\n"); |
| log("and a value greater than 1 means configurable. All groups with the same value\n"); |
| log("greater than 1 share the same configuration bit.\n"); |
| log("\n"); |
| log("Using the same bram name in different bram blocks will create different variants\n"); |
| log("of the bram. Verilog configuration parameters for the bram are created as needed.\n"); |
| log("\n"); |
| log("It is also possible to create variants by repeating statements in the bram block\n"); |
| log("and appending '@<label>' to the individual statements.\n"); |
| log("\n"); |
| log("A match rule looks like this:\n"); |
| log("\n"); |
| log(" match RAMB1024X32\n"); |
| log(" max waste 16384 # only use this bram if <= 16k ram bits are unused\n"); |
| log(" min efficiency 80 # only use this bram if efficiency is at least 80%%\n"); |
| log(" endmatch\n"); |
| log("\n"); |
| log("It is possible to match against the following values with min/max rules:\n"); |
| log("\n"); |
| log(" words ........ number of words in memory in design\n"); |
| log(" abits ........ number of address bits on memory in design\n"); |
| log(" dbits ........ number of data bits on memory in design\n"); |
| log(" wports ....... number of write ports on memory in design\n"); |
| log(" rports ....... number of read ports on memory in design\n"); |
| log(" ports ........ number of ports on memory in design\n"); |
| log(" bits ......... number of bits in memory in design\n"); |
| log(" dups .......... number of duplications for more read ports\n"); |
| log("\n"); |
| log(" awaste ....... number of unused address slots for this match\n"); |
| log(" dwaste ....... number of unused data bits for this match\n"); |
| log(" bwaste ....... number of unused bram bits for this match\n"); |
| log(" waste ........ total number of unused bram bits (bwaste*dups)\n"); |
| log(" efficiency ... total percentage of used and non-duplicated bits\n"); |
| log("\n"); |
| log(" acells ....... number of cells in 'address-direction'\n"); |
| log(" dcells ....... number of cells in 'data-direction'\n"); |
| log(" cells ........ total number of cells (acells*dcells*dups)\n"); |
| log("\n"); |
| log("The interface for the created bram instances is derived from the bram\n"); |
| log("description. Use 'techmap' to convert the created bram instances into\n"); |
| log("instances of the actual bram cells of your target architecture.\n"); |
| log("\n"); |
| log("A match containing the command 'or_next_if_better' is only used if it\n"); |
| log("has a higher efficiency than the next match (and the one after that if\n"); |
| log("the next also has 'or_next_if_better' set, and so forth).\n"); |
| log("\n"); |
| log("A match containing the command 'make_transp' will add external circuitry\n"); |
| log("to simulate 'transparent read', if necessary.\n"); |
| log("\n"); |
| log("A match containing the command 'make_outreg' will add external flip-flops\n"); |
| log("to implement synchronous read ports, if necessary.\n"); |
| log("\n"); |
| log("A match containing the command 'shuffle_enable A' will re-organize\n"); |
| log("the data bits to accommodate the enable pattern of port A.\n"); |
| log("\n"); |
| } |
| void execute(vector<string> args, Design *design) YS_OVERRIDE |
| { |
| rules_t rules; |
| |
| log_header(design, "Executing MEMORY_BRAM pass (mapping $mem cells to block memories).\n"); |
| |
| size_t argidx; |
| for (argidx = 1; argidx < args.size(); argidx++) { |
| if (args[argidx] == "-rules" && argidx+1 < args.size()) { |
| rules.parse(args[++argidx]); |
| continue; |
| } |
| break; |
| } |
| extra_args(args, argidx, design); |
| |
| for (auto mod : design->selected_modules()) |
| for (auto cell : mod->selected_cells()) |
| if (cell->type == "$mem") |
| handle_cell(cell, rules); |
| } |
| } MemoryBramPass; |
| |
| PRIVATE_NAMESPACE_END |