| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/yosys.h" |
| #include "kernel/satgen.h" |
| #include "kernel/sigtools.h" |
| #include "kernel/modtools.h" |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| bool memcells_cmp(RTLIL::Cell *a, RTLIL::Cell *b) |
| { |
| if (a->type == "$memrd" && b->type == "$memrd") |
| return a->name < b->name; |
| if (a->type == "$memrd" || b->type == "$memrd") |
| return (a->type == "$memrd") < (b->type == "$memrd"); |
| return a->parameters.at("\\PRIORITY").as_int() < b->parameters.at("\\PRIORITY").as_int(); |
| } |
| |
| struct MemoryShareWorker |
| { |
| RTLIL::Design *design; |
| RTLIL::Module *module; |
| SigMap sigmap, sigmap_xmux; |
| ModWalker modwalker; |
| CellTypes cone_ct; |
| |
| std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, int>> sig_to_mux; |
| std::map<pair<std::set<std::map<SigBit, bool>>, SigBit>, SigBit> conditions_logic_cache; |
| |
| |
| // ----------------------------------------------------------------- |
| // Converting feedbacks to async read ports to proper enable signals |
| // ----------------------------------------------------------------- |
| |
| bool find_data_feedback(const std::set<RTLIL::SigBit> &async_rd_bits, RTLIL::SigBit sig, |
| std::map<RTLIL::SigBit, bool> &state, std::set<std::map<RTLIL::SigBit, bool>> &conditions) |
| { |
| if (async_rd_bits.count(sig)) { |
| conditions.insert(state); |
| return true; |
| } |
| |
| if (sig_to_mux.count(sig) == 0) |
| return false; |
| |
| RTLIL::Cell *cell = sig_to_mux.at(sig).first; |
| int bit_idx = sig_to_mux.at(sig).second; |
| |
| std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A")); |
| std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B")); |
| std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S")); |
| std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); |
| log_assert(sig_y.at(bit_idx) == sig); |
| |
| for (int i = 0; i < int(sig_s.size()); i++) |
| if (state.count(sig_s[i]) && state.at(sig_s[i]) == true) { |
| if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), state, conditions)) { |
| RTLIL::SigSpec new_b = cell->getPort("\\B"); |
| new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); |
| cell->setPort("\\B", new_b); |
| } |
| return false; |
| } |
| |
| |
| for (int i = 0; i < int(sig_s.size()); i++) |
| { |
| if (state.count(sig_s[i]) && state.at(sig_s[i]) == false) |
| continue; |
| |
| std::map<RTLIL::SigBit, bool> new_state = state; |
| new_state[sig_s[i]] = true; |
| |
| if (find_data_feedback(async_rd_bits, sig_b.at(bit_idx + i*sig_y.size()), new_state, conditions)) { |
| RTLIL::SigSpec new_b = cell->getPort("\\B"); |
| new_b.replace(bit_idx + i*sig_y.size(), RTLIL::State::Sx); |
| cell->setPort("\\B", new_b); |
| } |
| } |
| |
| std::map<RTLIL::SigBit, bool> new_state = state; |
| for (int i = 0; i < int(sig_s.size()); i++) |
| new_state[sig_s[i]] = false; |
| |
| if (find_data_feedback(async_rd_bits, sig_a.at(bit_idx), new_state, conditions)) { |
| RTLIL::SigSpec new_a = cell->getPort("\\A"); |
| new_a.replace(bit_idx, RTLIL::State::Sx); |
| cell->setPort("\\A", new_a); |
| } |
| |
| return false; |
| } |
| |
| RTLIL::SigBit conditions_to_logic(std::set<std::map<RTLIL::SigBit, bool>> &conditions, SigBit olden, int &created_conditions) |
| { |
| auto key = make_pair(conditions, olden); |
| |
| if (conditions_logic_cache.count(key)) |
| return conditions_logic_cache.at(key); |
| |
| RTLIL::SigSpec terms; |
| for (auto &cond : conditions) { |
| RTLIL::SigSpec sig1, sig2; |
| for (auto &it : cond) { |
| sig1.append_bit(it.first); |
| sig2.append_bit(it.second ? RTLIL::State::S1 : RTLIL::State::S0); |
| } |
| terms.append(module->Ne(NEW_ID, sig1, sig2)); |
| created_conditions++; |
| } |
| |
| if (olden.wire != nullptr || olden != State::S1) |
| terms.append(olden); |
| |
| if (GetSize(terms) == 0) |
| terms = State::S1; |
| |
| if (GetSize(terms) > 1) |
| terms = module->ReduceAnd(NEW_ID, terms); |
| |
| return conditions_logic_cache[key] = terms; |
| } |
| |
| void translate_rd_feedback_to_en(std::string memid, std::vector<RTLIL::Cell*> &rd_ports, std::vector<RTLIL::Cell*> &wr_ports) |
| { |
| std::map<RTLIL::SigSpec, std::vector<std::set<RTLIL::SigBit>>> async_rd_bits; |
| std::map<RTLIL::SigBit, std::set<RTLIL::SigBit>> muxtree_upstream_map; |
| std::set<RTLIL::SigBit> non_feedback_nets; |
| |
| for (auto wire : module->wires()) |
| if (wire->port_output) { |
| std::vector<RTLIL::SigBit> bits = sigmap(wire); |
| non_feedback_nets.insert(bits.begin(), bits.end()); |
| } |
| |
| for (auto cell : module->cells()) |
| { |
| bool ignore_data_port = false; |
| |
| if (cell->type.in("$mux", "$pmux")) |
| { |
| std::vector<RTLIL::SigBit> sig_a = sigmap(cell->getPort("\\A")); |
| std::vector<RTLIL::SigBit> sig_b = sigmap(cell->getPort("\\B")); |
| std::vector<RTLIL::SigBit> sig_s = sigmap(cell->getPort("\\S")); |
| std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); |
| |
| non_feedback_nets.insert(sig_s.begin(), sig_s.end()); |
| |
| for (int i = 0; i < int(sig_y.size()); i++) { |
| muxtree_upstream_map[sig_y[i]].insert(sig_a[i]); |
| for (int j = 0; j < int(sig_s.size()); j++) |
| muxtree_upstream_map[sig_y[i]].insert(sig_b[i + j*sig_y.size()]); |
| } |
| |
| continue; |
| } |
| |
| if (cell->type.in("$memwr", "$memrd") && |
| cell->parameters.at("\\MEMID").decode_string() == memid) |
| ignore_data_port = true; |
| |
| for (auto conn : cell->connections()) |
| { |
| if (ignore_data_port && conn.first == "\\DATA") |
| continue; |
| std::vector<RTLIL::SigBit> bits = sigmap(conn.second); |
| non_feedback_nets.insert(bits.begin(), bits.end()); |
| } |
| } |
| |
| std::set<RTLIL::SigBit> expand_non_feedback_nets = non_feedback_nets; |
| while (!expand_non_feedback_nets.empty()) |
| { |
| std::set<RTLIL::SigBit> new_expand_non_feedback_nets; |
| |
| for (auto &bit : expand_non_feedback_nets) |
| if (muxtree_upstream_map.count(bit)) |
| for (auto &new_bit : muxtree_upstream_map.at(bit)) |
| if (!non_feedback_nets.count(new_bit)) { |
| non_feedback_nets.insert(new_bit); |
| new_expand_non_feedback_nets.insert(new_bit); |
| } |
| |
| expand_non_feedback_nets.swap(new_expand_non_feedback_nets); |
| } |
| |
| for (auto cell : rd_ports) |
| { |
| if (cell->parameters.at("\\CLK_ENABLE").as_bool()) |
| continue; |
| |
| RTLIL::SigSpec sig_addr = sigmap(cell->getPort("\\ADDR")); |
| std::vector<RTLIL::SigBit> sig_data = sigmap(cell->getPort("\\DATA")); |
| |
| for (int i = 0; i < int(sig_data.size()); i++) |
| if (non_feedback_nets.count(sig_data[i])) |
| goto not_pure_feedback_port; |
| |
| async_rd_bits[sig_addr].resize(max(async_rd_bits.size(), sig_data.size())); |
| for (int i = 0; i < int(sig_data.size()); i++) |
| async_rd_bits[sig_addr][i].insert(sig_data[i]); |
| |
| not_pure_feedback_port:; |
| } |
| |
| if (async_rd_bits.empty()) |
| return; |
| |
| log("Populating enable bits on write ports of memory %s.%s with aync read feedback:\n", log_id(module), log_id(memid)); |
| |
| for (auto cell : wr_ports) |
| { |
| RTLIL::SigSpec sig_addr = sigmap_xmux(cell->getPort("\\ADDR")); |
| if (!async_rd_bits.count(sig_addr)) |
| continue; |
| |
| log(" Analyzing write port %s.\n", log_id(cell)); |
| |
| std::vector<RTLIL::SigBit> cell_data = cell->getPort("\\DATA"); |
| std::vector<RTLIL::SigBit> cell_en = cell->getPort("\\EN"); |
| |
| int created_conditions = 0; |
| for (int i = 0; i < int(cell_data.size()); i++) |
| if (cell_en[i] != RTLIL::SigBit(RTLIL::State::S0)) |
| { |
| std::map<RTLIL::SigBit, bool> state; |
| std::set<std::map<RTLIL::SigBit, bool>> conditions; |
| |
| find_data_feedback(async_rd_bits.at(sig_addr).at(i), cell_data[i], state, conditions); |
| cell_en[i] = conditions_to_logic(conditions, cell_en[i], created_conditions); |
| } |
| |
| if (created_conditions) { |
| log(" Added enable logic for %d different cases.\n", created_conditions); |
| cell->setPort("\\EN", cell_en); |
| } |
| } |
| } |
| |
| |
| // ------------------------------------------------------ |
| // Consolidate write ports that write to the same address |
| // ------------------------------------------------------ |
| |
| RTLIL::SigSpec mask_en_naive(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) |
| { |
| // this is the naive version of the function that does not care about grouping the EN bits. |
| |
| RTLIL::SigSpec inv_mask_bits = module->Not(NEW_ID, mask_bits); |
| RTLIL::SigSpec inv_mask_bits_filtered = module->Mux(NEW_ID, RTLIL::SigSpec(RTLIL::State::S1, bits.size()), inv_mask_bits, do_mask); |
| RTLIL::SigSpec result = module->And(NEW_ID, inv_mask_bits_filtered, bits); |
| return result; |
| } |
| |
| RTLIL::SigSpec mask_en_grouped(RTLIL::SigSpec do_mask, RTLIL::SigSpec bits, RTLIL::SigSpec mask_bits) |
| { |
| // this version of the function preserves the bit grouping in the EN bits. |
| |
| std::vector<RTLIL::SigBit> v_bits = bits; |
| std::vector<RTLIL::SigBit> v_mask_bits = mask_bits; |
| |
| std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, std::pair<int, std::vector<int>>> groups; |
| RTLIL::SigSpec grouped_bits, grouped_mask_bits; |
| |
| for (int i = 0; i < bits.size(); i++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]); |
| if (groups.count(key) == 0) { |
| groups[key].first = grouped_bits.size(); |
| grouped_bits.append_bit(v_bits[i]); |
| grouped_mask_bits.append_bit(v_mask_bits[i]); |
| } |
| groups[key].second.push_back(i); |
| } |
| |
| std::vector<RTLIL::SigBit> grouped_result = mask_en_naive(do_mask, grouped_bits, grouped_mask_bits); |
| RTLIL::SigSpec result; |
| |
| for (int i = 0; i < bits.size(); i++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_bits[i], v_mask_bits[i]); |
| result.append_bit(grouped_result.at(groups.at(key).first)); |
| } |
| |
| return result; |
| } |
| |
| void merge_en_data(RTLIL::SigSpec &merged_en, RTLIL::SigSpec &merged_data, RTLIL::SigSpec next_en, RTLIL::SigSpec next_data) |
| { |
| std::vector<RTLIL::SigBit> v_old_en = merged_en; |
| std::vector<RTLIL::SigBit> v_next_en = next_en; |
| |
| // The new merged_en signal is just the old merged_en signal and next_en OR'ed together. |
| // But of course we need to preserve the bit grouping.. |
| |
| std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups; |
| std::vector<RTLIL::SigBit> grouped_old_en, grouped_next_en; |
| RTLIL::SigSpec new_merged_en; |
| |
| for (int i = 0; i < int(v_old_en.size()); i++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]); |
| if (groups.count(key) == 0) { |
| groups[key] = grouped_old_en.size(); |
| grouped_old_en.push_back(key.first); |
| grouped_next_en.push_back(key.second); |
| } |
| } |
| |
| std::vector<RTLIL::SigBit> grouped_new_en = module->Or(NEW_ID, grouped_old_en, grouped_next_en); |
| |
| for (int i = 0; i < int(v_old_en.size()); i++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> key(v_old_en[i], v_next_en[i]); |
| new_merged_en.append_bit(grouped_new_en.at(groups.at(key))); |
| } |
| |
| // Create the new merged_data signal. |
| |
| RTLIL::SigSpec new_merged_data(RTLIL::State::Sx, merged_data.size()); |
| |
| RTLIL::SigSpec old_data_set = module->And(NEW_ID, merged_en, merged_data); |
| RTLIL::SigSpec old_data_unset = module->And(NEW_ID, merged_en, module->Not(NEW_ID, merged_data)); |
| |
| RTLIL::SigSpec new_data_set = module->And(NEW_ID, next_en, next_data); |
| RTLIL::SigSpec new_data_unset = module->And(NEW_ID, next_en, module->Not(NEW_ID, next_data)); |
| |
| new_merged_data = module->Or(NEW_ID, new_merged_data, old_data_set); |
| new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, old_data_unset)); |
| |
| new_merged_data = module->Or(NEW_ID, new_merged_data, new_data_set); |
| new_merged_data = module->And(NEW_ID, new_merged_data, module->Not(NEW_ID, new_data_unset)); |
| |
| // Update merged_* signals |
| |
| merged_en = new_merged_en; |
| merged_data = new_merged_data; |
| } |
| |
| void consolidate_wr_by_addr(std::string memid, std::vector<RTLIL::Cell*> &wr_ports) |
| { |
| if (wr_ports.size() <= 1) |
| return; |
| |
| log("Consolidating write ports of memory %s.%s by address:\n", log_id(module), log_id(memid)); |
| |
| std::map<RTLIL::SigSpec, int> last_port_by_addr; |
| std::vector<std::vector<bool>> active_bits_on_port; |
| |
| bool cache_clk_enable = false; |
| bool cache_clk_polarity = false; |
| RTLIL::SigSpec cache_clk; |
| |
| for (int i = 0; i < int(wr_ports.size()); i++) |
| { |
| RTLIL::Cell *cell = wr_ports.at(i); |
| RTLIL::SigSpec addr = sigmap_xmux(cell->getPort("\\ADDR")); |
| |
| if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || |
| (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk || |
| cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) |
| { |
| cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); |
| cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); |
| cache_clk = sigmap(cell->getPort("\\CLK")); |
| last_port_by_addr.clear(); |
| |
| if (cache_clk_enable) |
| log(" New clock domain: %s %s\n", cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk)); |
| else |
| log(" New clock domain: unclocked\n"); |
| } |
| |
| log(" Port %d (%s) has addr %s.\n", i, log_id(cell), log_signal(addr)); |
| |
| log(" Active bits: "); |
| std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN")); |
| active_bits_on_port.push_back(std::vector<bool>(en_bits.size())); |
| for (int k = int(en_bits.size())-1; k >= 0; k--) { |
| active_bits_on_port[i][k] = en_bits[k].wire != NULL || en_bits[k].data != RTLIL::State::S0; |
| log("%c", active_bits_on_port[i][k] ? '1' : '0'); |
| } |
| log("\n"); |
| |
| if (last_port_by_addr.count(addr)) |
| { |
| int last_i = last_port_by_addr.at(addr); |
| log(" Merging port %d into this one.\n", last_i); |
| |
| bool found_overlapping_bits = false; |
| for (int k = 0; k < int(en_bits.size()); k++) { |
| if (active_bits_on_port[i][k] && active_bits_on_port[last_i][k]) |
| found_overlapping_bits = true; |
| active_bits_on_port[i][k] = active_bits_on_port[i][k] || active_bits_on_port[last_i][k]; |
| } |
| |
| // Force this ports addr input to addr directly (skip don't care muxes) |
| |
| cell->setPort("\\ADDR", addr); |
| |
| // If any of the ports between `last_i' and `i' write to the same address, this |
| // will have priority over whatever `last_i` wrote. So we need to revisit those |
| // ports and mask the EN bits accordingly. |
| |
| RTLIL::SigSpec merged_en = sigmap(wr_ports[last_i]->getPort("\\EN")); |
| |
| for (int j = last_i+1; j < i; j++) |
| { |
| if (wr_ports[j] == NULL) |
| continue; |
| |
| for (int k = 0; k < int(en_bits.size()); k++) |
| if (active_bits_on_port[i][k] && active_bits_on_port[j][k]) |
| goto found_overlapping_bits_i_j; |
| |
| if (0) { |
| found_overlapping_bits_i_j: |
| log(" Creating collosion-detect logic for port %d.\n", j); |
| RTLIL::SigSpec is_same_addr = module->addWire(NEW_ID); |
| module->addEq(NEW_ID, addr, wr_ports[j]->getPort("\\ADDR"), is_same_addr); |
| merged_en = mask_en_grouped(is_same_addr, merged_en, sigmap(wr_ports[j]->getPort("\\EN"))); |
| } |
| } |
| |
| // Then we need to merge the (masked) EN and the DATA signals. |
| |
| RTLIL::SigSpec merged_data = wr_ports[last_i]->getPort("\\DATA"); |
| if (found_overlapping_bits) { |
| log(" Creating logic for merging DATA and EN ports.\n"); |
| merge_en_data(merged_en, merged_data, sigmap(cell->getPort("\\EN")), sigmap(cell->getPort("\\DATA"))); |
| } else { |
| RTLIL::SigSpec cell_en = sigmap(cell->getPort("\\EN")); |
| RTLIL::SigSpec cell_data = sigmap(cell->getPort("\\DATA")); |
| for (int k = 0; k < int(en_bits.size()); k++) |
| if (!active_bits_on_port[last_i][k]) { |
| merged_en.replace(k, cell_en.extract(k, 1)); |
| merged_data.replace(k, cell_data.extract(k, 1)); |
| } |
| } |
| |
| // Connect the new EN and DATA signals and remove the old write port. |
| |
| cell->setPort("\\EN", merged_en); |
| cell->setPort("\\DATA", merged_data); |
| |
| module->remove(wr_ports[last_i]); |
| wr_ports[last_i] = NULL; |
| |
| log(" Active bits: "); |
| std::vector<RTLIL::SigBit> en_bits = sigmap(cell->getPort("\\EN")); |
| active_bits_on_port.push_back(std::vector<bool>(en_bits.size())); |
| for (int k = int(en_bits.size())-1; k >= 0; k--) |
| log("%c", active_bits_on_port[i][k] ? '1' : '0'); |
| log("\n"); |
| } |
| |
| last_port_by_addr[addr] = i; |
| } |
| |
| // Clean up `wr_ports': remove all NULL entries |
| |
| std::vector<RTLIL::Cell*> wr_ports_with_nulls; |
| wr_ports_with_nulls.swap(wr_ports); |
| |
| for (auto cell : wr_ports_with_nulls) |
| if (cell != NULL) |
| wr_ports.push_back(cell); |
| } |
| |
| |
| // -------------------------------------------------------- |
| // Consolidate write ports using sat-based resource sharing |
| // -------------------------------------------------------- |
| |
| void consolidate_wr_using_sat(std::string memid, std::vector<RTLIL::Cell*> &wr_ports) |
| { |
| if (wr_ports.size() <= 1) |
| return; |
| |
| ezSatPtr ez; |
| SatGen satgen(ez.get(), &modwalker.sigmap); |
| |
| // find list of considered ports and port pairs |
| |
| std::set<int> considered_ports; |
| std::set<int> considered_port_pairs; |
| |
| for (int i = 0; i < int(wr_ports.size()); i++) { |
| std::vector<RTLIL::SigBit> bits = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); |
| for (auto bit : bits) |
| if (bit == RTLIL::State::S1) |
| goto port_is_always_active; |
| if (modwalker.has_drivers(bits)) |
| considered_ports.insert(i); |
| port_is_always_active:; |
| } |
| |
| log("Consolidating write ports of memory %s.%s using sat-based resource sharing:\n", log_id(module), log_id(memid)); |
| |
| bool cache_clk_enable = false; |
| bool cache_clk_polarity = false; |
| RTLIL::SigSpec cache_clk; |
| |
| for (int i = 0; i < int(wr_ports.size()); i++) |
| { |
| RTLIL::Cell *cell = wr_ports.at(i); |
| |
| if (cell->parameters.at("\\CLK_ENABLE").as_bool() != cache_clk_enable || |
| (cache_clk_enable && (sigmap(cell->getPort("\\CLK")) != cache_clk || |
| cell->parameters.at("\\CLK_POLARITY").as_bool() != cache_clk_polarity))) |
| { |
| cache_clk_enable = cell->parameters.at("\\CLK_ENABLE").as_bool(); |
| cache_clk_polarity = cell->parameters.at("\\CLK_POLARITY").as_bool(); |
| cache_clk = sigmap(cell->getPort("\\CLK")); |
| } |
| else if (i > 0 && considered_ports.count(i-1) && considered_ports.count(i)) |
| considered_port_pairs.insert(i); |
| |
| if (cache_clk_enable) |
| log(" Port %d (%s) on %s %s: %s\n", i, log_id(cell), |
| cache_clk_polarity ? "posedge" : "negedge", log_signal(cache_clk), |
| considered_ports.count(i) ? "considered" : "not considered"); |
| else |
| log(" Port %d (%s) unclocked: %s\n", i, log_id(cell), |
| considered_ports.count(i) ? "considered" : "not considered"); |
| } |
| |
| if (considered_port_pairs.size() < 1) { |
| log(" No two subsequent ports in same clock domain considered -> nothing to consolidate.\n"); |
| return; |
| } |
| |
| // create SAT representation of common input cone of all considered EN signals |
| |
| pool<Wire*> one_hot_wires; |
| std::set<RTLIL::Cell*> sat_cells; |
| std::set<RTLIL::SigBit> bits_queue; |
| std::map<int, int> port_to_sat_variable; |
| |
| for (int i = 0; i < int(wr_ports.size()); i++) |
| if (considered_port_pairs.count(i) || considered_port_pairs.count(i+1)) |
| { |
| RTLIL::SigSpec sig = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); |
| port_to_sat_variable[i] = ez->expression(ez->OpOr, satgen.importSigSpec(sig)); |
| |
| std::vector<RTLIL::SigBit> bits = sig; |
| bits_queue.insert(bits.begin(), bits.end()); |
| } |
| |
| while (!bits_queue.empty()) |
| { |
| for (auto bit : bits_queue) |
| if (bit.wire && bit.wire->get_bool_attribute("\\onehot")) |
| one_hot_wires.insert(bit.wire); |
| |
| pool<ModWalker::PortBit> portbits; |
| modwalker.get_drivers(portbits, bits_queue); |
| bits_queue.clear(); |
| |
| for (auto &pbit : portbits) |
| if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) { |
| pool<RTLIL::SigBit> &cell_inputs = modwalker.cell_inputs[pbit.cell]; |
| bits_queue.insert(cell_inputs.begin(), cell_inputs.end()); |
| sat_cells.insert(pbit.cell); |
| } |
| } |
| |
| for (auto wire : one_hot_wires) { |
| log(" Adding one-hot constraint for wire %s.\n", log_id(wire)); |
| vector<int> ez_wire_bits = satgen.importSigSpec(wire); |
| for (int i : ez_wire_bits) |
| for (int j : ez_wire_bits) |
| if (i != j) ez->assume(ez->NOT(i), j); |
| } |
| |
| log(" Common input cone for all EN signals: %d cells.\n", int(sat_cells.size())); |
| |
| for (auto cell : sat_cells) |
| satgen.importCell(cell); |
| |
| log(" Size of unconstrained SAT problem: %d variables, %d clauses\n", ez->numCnfVariables(), ez->numCnfClauses()); |
| |
| // merge subsequent ports if possible |
| |
| for (int i = 0; i < int(wr_ports.size()); i++) |
| { |
| if (!considered_port_pairs.count(i)) |
| continue; |
| |
| if (ez->solve(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i))) { |
| log(" According to SAT solver sharing of port %d with port %d is not possible.\n", i-1, i); |
| continue; |
| } |
| |
| log(" Merging port %d into port %d.\n", i-1, i); |
| port_to_sat_variable.at(i) = ez->OR(port_to_sat_variable.at(i-1), port_to_sat_variable.at(i)); |
| |
| RTLIL::SigSpec last_addr = wr_ports[i-1]->getPort("\\ADDR"); |
| RTLIL::SigSpec last_data = wr_ports[i-1]->getPort("\\DATA"); |
| std::vector<RTLIL::SigBit> last_en = modwalker.sigmap(wr_ports[i-1]->getPort("\\EN")); |
| |
| RTLIL::SigSpec this_addr = wr_ports[i]->getPort("\\ADDR"); |
| RTLIL::SigSpec this_data = wr_ports[i]->getPort("\\DATA"); |
| std::vector<RTLIL::SigBit> this_en = modwalker.sigmap(wr_ports[i]->getPort("\\EN")); |
| |
| RTLIL::SigBit this_en_active = module->ReduceOr(NEW_ID, this_en); |
| |
| if (GetSize(last_addr) < GetSize(this_addr)) |
| last_addr.extend_u0(GetSize(this_addr)); |
| else |
| this_addr.extend_u0(GetSize(last_addr)); |
| |
| wr_ports[i]->setParam("\\ABITS", GetSize(this_addr)); |
| wr_ports[i]->setPort("\\ADDR", module->Mux(NEW_ID, last_addr, this_addr, this_en_active)); |
| wr_ports[i]->setPort("\\DATA", module->Mux(NEW_ID, last_data, this_data, this_en_active)); |
| |
| std::map<std::pair<RTLIL::SigBit, RTLIL::SigBit>, int> groups_en; |
| RTLIL::SigSpec grouped_last_en, grouped_this_en, en; |
| RTLIL::Wire *grouped_en = module->addWire(NEW_ID, 0); |
| |
| for (int j = 0; j < int(this_en.size()); j++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> key(last_en[j], this_en[j]); |
| if (!groups_en.count(key)) { |
| grouped_last_en.append_bit(last_en[j]); |
| grouped_this_en.append_bit(this_en[j]); |
| groups_en[key] = grouped_en->width; |
| grouped_en->width++; |
| } |
| en.append(RTLIL::SigSpec(grouped_en, groups_en[key])); |
| } |
| |
| module->addMux(NEW_ID, grouped_last_en, grouped_this_en, this_en_active, grouped_en); |
| wr_ports[i]->setPort("\\EN", en); |
| |
| module->remove(wr_ports[i-1]); |
| wr_ports[i-1] = NULL; |
| } |
| |
| // Clean up `wr_ports': remove all NULL entries |
| |
| std::vector<RTLIL::Cell*> wr_ports_with_nulls; |
| wr_ports_with_nulls.swap(wr_ports); |
| |
| for (auto cell : wr_ports_with_nulls) |
| if (cell != NULL) |
| wr_ports.push_back(cell); |
| } |
| |
| |
| // ------------- |
| // Setup and run |
| // ------------- |
| |
| MemoryShareWorker(RTLIL::Design *design, RTLIL::Module *module) : |
| design(design), module(module), sigmap(module) |
| { |
| std::map<std::string, std::pair<std::vector<RTLIL::Cell*>, std::vector<RTLIL::Cell*>>> memindex; |
| |
| sigmap_xmux = sigmap; |
| for (auto cell : module->cells()) |
| { |
| if (cell->type == "$memrd") |
| memindex[cell->parameters.at("\\MEMID").decode_string()].first.push_back(cell); |
| |
| if (cell->type == "$memwr") |
| memindex[cell->parameters.at("\\MEMID").decode_string()].second.push_back(cell); |
| |
| if (cell->type == "$mux") |
| { |
| RTLIL::SigSpec sig_a = sigmap_xmux(cell->getPort("\\A")); |
| RTLIL::SigSpec sig_b = sigmap_xmux(cell->getPort("\\B")); |
| |
| if (sig_a.is_fully_undef()) |
| sigmap_xmux.add(cell->getPort("\\Y"), sig_b); |
| else if (sig_b.is_fully_undef()) |
| sigmap_xmux.add(cell->getPort("\\Y"), sig_a); |
| } |
| |
| if (cell->type.in("$mux", "$pmux")) |
| { |
| std::vector<RTLIL::SigBit> sig_y = sigmap(cell->getPort("\\Y")); |
| for (int i = 0; i < int(sig_y.size()); i++) |
| sig_to_mux[sig_y[i]] = std::pair<RTLIL::Cell*, int>(cell, i); |
| } |
| } |
| |
| for (auto &it : memindex) { |
| std::sort(it.second.first.begin(), it.second.first.end(), memcells_cmp); |
| std::sort(it.second.second.begin(), it.second.second.end(), memcells_cmp); |
| translate_rd_feedback_to_en(it.first, it.second.first, it.second.second); |
| consolidate_wr_by_addr(it.first, it.second.second); |
| } |
| |
| cone_ct.setup_internals(); |
| cone_ct.cell_types.erase("$mul"); |
| cone_ct.cell_types.erase("$mod"); |
| cone_ct.cell_types.erase("$div"); |
| cone_ct.cell_types.erase("$pow"); |
| cone_ct.cell_types.erase("$shl"); |
| cone_ct.cell_types.erase("$shr"); |
| cone_ct.cell_types.erase("$sshl"); |
| cone_ct.cell_types.erase("$sshr"); |
| cone_ct.cell_types.erase("$shift"); |
| cone_ct.cell_types.erase("$shiftx"); |
| |
| modwalker.setup(design, module, &cone_ct); |
| |
| for (auto &it : memindex) |
| consolidate_wr_using_sat(it.first, it.second.second); |
| } |
| }; |
| |
| struct MemorySharePass : public Pass { |
| MemorySharePass() : Pass("memory_share", "consolidate memory ports") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" memory_share [selection]\n"); |
| log("\n"); |
| log("This pass merges share-able memory ports into single memory ports.\n"); |
| log("\n"); |
| log("The following methods are used to consolidate the number of memory ports:\n"); |
| log("\n"); |
| log(" - When write ports are connected to async read ports accessing the same\n"); |
| log(" address, then this feedback path is converted to a write port with\n"); |
| log(" byte/part enable signals.\n"); |
| log("\n"); |
| log(" - When multiple write ports access the same address then this is converted\n"); |
| log(" to a single write port with a more complex data and/or enable logic path.\n"); |
| log("\n"); |
| log(" - When multiple write ports are never accessed at the same time (a SAT\n"); |
| log(" solver is used to determine this), then the ports are merged into a single\n"); |
| log(" write port.\n"); |
| log("\n"); |
| log("Note that in addition to the algorithms implemented in this pass, the $memrd\n"); |
| log("and $memwr cells are also subject to generic resource sharing passes (and other\n"); |
| log("optimizations) such as \"share\" and \"opt_merge\".\n"); |
| log("\n"); |
| } |
| void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE { |
| log_header(design, "Executing MEMORY_SHARE pass (consolidating $memrd/$memwr cells).\n"); |
| extra_args(args, 1, design); |
| for (auto module : design->selected_modules()) |
| MemoryShareWorker(design, module); |
| } |
| } MemorySharePass; |
| |
| PRIVATE_NAMESPACE_END |