| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/register.h" |
| #include "kernel/celltypes.h" |
| #include "kernel/consteval.h" |
| #include "kernel/sigtools.h" |
| #include "kernel/log.h" |
| #include "kernel/satgen.h" |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <algorithm> |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| bool inv_mode; |
| int verbose_level, reduce_counter, reduce_stop_at; |
| typedef std::map<RTLIL::SigBit, std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>>> drivers_t; |
| std::string dump_prefix; |
| |
| struct equiv_bit_t |
| { |
| int depth; |
| bool inverted; |
| RTLIL::Cell *drv; |
| RTLIL::SigBit bit; |
| |
| bool operator<(const equiv_bit_t &other) const { |
| if (depth != other.depth) |
| return depth < other.depth; |
| if (inverted != other.inverted) |
| return inverted < other.inverted; |
| if (drv != other.drv) |
| return drv < other.drv; |
| return bit < other.bit; |
| } |
| }; |
| |
| struct CountBitUsage |
| { |
| SigMap &sigmap; |
| std::map<RTLIL::SigBit, int> &cache; |
| |
| CountBitUsage(SigMap &sigmap, std::map<RTLIL::SigBit, int> &cache) : sigmap(sigmap), cache(cache) { } |
| |
| void operator()(RTLIL::SigSpec &sig) { |
| std::vector<RTLIL::SigBit> vec = sigmap(sig).to_sigbit_vector(); |
| for (auto &bit : vec) |
| cache[bit]++; |
| } |
| }; |
| |
| struct FindReducedInputs |
| { |
| SigMap &sigmap; |
| drivers_t &drivers; |
| |
| ezSatPtr ez; |
| std::set<RTLIL::Cell*> ez_cells; |
| SatGen satgen; |
| |
| std::map<RTLIL::SigBit, int> sat_pi; |
| std::vector<int> sat_pi_uniq_bitvec; |
| |
| FindReducedInputs(SigMap &sigmap, drivers_t &drivers) : |
| sigmap(sigmap), drivers(drivers), satgen(ez.get(), &sigmap) |
| { |
| satgen.model_undef = true; |
| } |
| |
| int get_bits(int val) |
| { |
| int bits = 0; |
| for (int i = 8*sizeof(int); val; i = i >> 1) |
| if (val >> (i-1)) { |
| bits += i; |
| val = val >> i; |
| } |
| return bits; |
| } |
| |
| void register_pi_bit(RTLIL::SigBit bit) |
| { |
| if (sat_pi.count(bit) != 0) |
| return; |
| |
| satgen.setContext(&sigmap, "A"); |
| int sat_a = satgen.importSigSpec(bit).front(); |
| ez->assume(ez->NOT(satgen.importUndefSigSpec(bit).front())); |
| |
| satgen.setContext(&sigmap, "B"); |
| int sat_b = satgen.importSigSpec(bit).front(); |
| ez->assume(ez->NOT(satgen.importUndefSigSpec(bit).front())); |
| |
| int idx = sat_pi.size(); |
| size_t idx_bits = get_bits(idx); |
| |
| if (sat_pi_uniq_bitvec.size() != idx_bits) { |
| sat_pi_uniq_bitvec.push_back(ez->frozen_literal(stringf("uniq_%d", int(idx_bits)-1))); |
| for (auto &it : sat_pi) |
| ez->assume(ez->OR(ez->NOT(it.second), ez->NOT(sat_pi_uniq_bitvec.back()))); |
| } |
| log_assert(sat_pi_uniq_bitvec.size() == idx_bits); |
| |
| sat_pi[bit] = ez->frozen_literal(stringf("p, falsei_%s", log_signal(bit))); |
| ez->assume(ez->IFF(ez->XOR(sat_a, sat_b), sat_pi[bit])); |
| |
| for (size_t i = 0; i < idx_bits; i++) |
| if ((idx & (1 << i)) == 0) |
| ez->assume(ez->OR(ez->NOT(sat_pi[bit]), ez->NOT(sat_pi_uniq_bitvec[i]))); |
| else |
| ez->assume(ez->OR(ez->NOT(sat_pi[bit]), sat_pi_uniq_bitvec[i])); |
| } |
| |
| void register_cone_worker(std::set<RTLIL::SigBit> &pi, std::set<RTLIL::SigBit> &sigdone, RTLIL::SigBit out) |
| { |
| if (out.wire == NULL) |
| return; |
| if (sigdone.count(out) != 0) |
| return; |
| sigdone.insert(out); |
| |
| if (drivers.count(out) != 0) { |
| std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> &drv = drivers.at(out); |
| if (ez_cells.count(drv.first) == 0) { |
| satgen.setContext(&sigmap, "A"); |
| if (!satgen.importCell(drv.first)) |
| log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type)); |
| satgen.setContext(&sigmap, "B"); |
| if (!satgen.importCell(drv.first)) |
| log_abort(); |
| ez_cells.insert(drv.first); |
| } |
| for (auto &bit : drv.second) |
| register_cone_worker(pi, sigdone, bit); |
| } else { |
| register_pi_bit(out); |
| pi.insert(out); |
| } |
| } |
| |
| void register_cone(std::vector<RTLIL::SigBit> &pi, RTLIL::SigBit out) |
| { |
| std::set<RTLIL::SigBit> pi_set, sigdone; |
| register_cone_worker(pi_set, sigdone, out); |
| pi.clear(); |
| pi.insert(pi.end(), pi_set.begin(), pi_set.end()); |
| } |
| |
| void analyze(std::vector<RTLIL::SigBit> &reduced_inputs, RTLIL::SigBit output, int prec) |
| { |
| if (verbose_level >= 1) |
| log("[%2d%%] Analyzing input cone for signal %s:\n", prec, log_signal(output)); |
| |
| std::vector<RTLIL::SigBit> pi; |
| register_cone(pi, output); |
| |
| if (verbose_level >= 1) |
| log(" Found %d input signals and %d cells.\n", int(pi.size()), int(ez_cells.size())); |
| |
| satgen.setContext(&sigmap, "A"); |
| int output_a = satgen.importSigSpec(output).front(); |
| int output_undef_a = satgen.importUndefSigSpec(output).front(); |
| |
| satgen.setContext(&sigmap, "B"); |
| int output_b = satgen.importSigSpec(output).front(); |
| int output_undef_b = satgen.importUndefSigSpec(output).front(); |
| |
| std::set<int> unused_pi_idx; |
| |
| for (size_t i = 0; i < pi.size(); i++) |
| unused_pi_idx.insert(i); |
| |
| while (1) |
| { |
| std::vector<int> model_pi_idx; |
| std::vector<int> model_expr; |
| std::vector<bool> model; |
| |
| for (size_t i = 0; i < pi.size(); i++) |
| if (unused_pi_idx.count(i) != 0) { |
| model_pi_idx.push_back(i); |
| model_expr.push_back(sat_pi.at(pi[i])); |
| } |
| |
| if (!ez->solve(model_expr, model, ez->expression(ezSAT::OpOr, model_expr), ez->XOR(output_a, output_b), ez->NOT(output_undef_a), ez->NOT(output_undef_b))) |
| break; |
| |
| int found_count = 0; |
| for (size_t i = 0; i < model_pi_idx.size(); i++) |
| if (model[i]) { |
| if (verbose_level >= 2) |
| log(" Found relevant input: %s\n", log_signal(pi[model_pi_idx[i]])); |
| unused_pi_idx.erase(model_pi_idx[i]); |
| found_count++; |
| } |
| log_assert(found_count == 1); |
| } |
| |
| for (size_t i = 0; i < pi.size(); i++) |
| if (unused_pi_idx.count(i) == 0) |
| reduced_inputs.push_back(pi[i]); |
| |
| if (verbose_level >= 1) |
| log(" Reduced input cone contains %d inputs.\n", int(reduced_inputs.size())); |
| } |
| }; |
| |
| struct PerformReduction |
| { |
| SigMap &sigmap; |
| drivers_t &drivers; |
| std::set<std::pair<RTLIL::SigBit, RTLIL::SigBit>> &inv_pairs; |
| pool<SigBit> recursion_guard; |
| |
| ezSatPtr ez; |
| SatGen satgen; |
| |
| std::vector<int> sat_pi, sat_out, sat_def; |
| std::vector<RTLIL::SigBit> out_bits, pi_bits; |
| std::vector<bool> out_inverted; |
| std::vector<int> out_depth; |
| int cone_size; |
| |
| int register_cone_worker(std::set<RTLIL::Cell*> &celldone, std::map<RTLIL::SigBit, int> &sigdepth, RTLIL::SigBit out) |
| { |
| if (out.wire == NULL) |
| return 0; |
| if (sigdepth.count(out) != 0) |
| return sigdepth.at(out); |
| |
| if (recursion_guard.count(out)) { |
| string loop_signals; |
| for (auto loop_bit : recursion_guard) |
| loop_signals += string(" ") + log_signal(loop_bit); |
| log_error("Found logic loop:%s\n", loop_signals.c_str()); |
| } |
| |
| recursion_guard.insert(out); |
| |
| if (drivers.count(out) != 0) { |
| std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> &drv = drivers.at(out); |
| if (celldone.count(drv.first) == 0) { |
| if (!satgen.importCell(drv.first)) |
| log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type)); |
| celldone.insert(drv.first); |
| } |
| int max_child_depth = 0; |
| for (auto &bit : drv.second) |
| max_child_depth = max(register_cone_worker(celldone, sigdepth, bit), max_child_depth); |
| sigdepth[out] = max_child_depth + 1; |
| } else { |
| pi_bits.push_back(out); |
| sat_pi.push_back(satgen.importSigSpec(out).front()); |
| ez->assume(ez->NOT(satgen.importUndefSigSpec(out).front())); |
| sigdepth[out] = 0; |
| } |
| |
| recursion_guard.erase(out); |
| return sigdepth.at(out); |
| } |
| |
| PerformReduction(SigMap &sigmap, drivers_t &drivers, std::set<std::pair<RTLIL::SigBit, RTLIL::SigBit>> &inv_pairs, std::vector<RTLIL::SigBit> &bits, int cone_size) : |
| sigmap(sigmap), drivers(drivers), inv_pairs(inv_pairs), satgen(ez.get(), &sigmap), out_bits(bits), cone_size(cone_size) |
| { |
| satgen.model_undef = true; |
| |
| std::set<RTLIL::Cell*> celldone; |
| std::map<RTLIL::SigBit, int> sigdepth; |
| |
| for (auto &bit : bits) { |
| out_depth.push_back(register_cone_worker(celldone, sigdepth, bit)); |
| sat_out.push_back(satgen.importSigSpec(bit).front()); |
| sat_def.push_back(ez->NOT(satgen.importUndefSigSpec(bit).front())); |
| } |
| |
| if (inv_mode && cone_size > 0) { |
| if (!ez->solve(sat_out, out_inverted, ez->expression(ezSAT::OpAnd, sat_def))) |
| log_error("Solving for initial model failed!\n"); |
| for (size_t i = 0; i < sat_out.size(); i++) |
| if (out_inverted.at(i)) |
| sat_out[i] = ez->NOT(sat_out[i]); |
| } else |
| out_inverted = std::vector<bool>(sat_out.size(), false); |
| } |
| |
| void analyze_const(std::vector<std::vector<equiv_bit_t>> &results, int idx) |
| { |
| if (verbose_level == 1) |
| log(" Finding const value for %s.\n", log_signal(out_bits[idx])); |
| |
| bool can_be_set = ez->solve(ez->AND(sat_out[idx], sat_def[idx])); |
| bool can_be_clr = ez->solve(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); |
| log_assert(!can_be_set || !can_be_clr); |
| |
| RTLIL::SigBit value(RTLIL::State::Sx); |
| if (can_be_set) |
| value = RTLIL::State::S1; |
| if (can_be_clr) |
| value = RTLIL::State::S0; |
| if (verbose_level == 1) |
| log(" Constant value for this signal: %s\n", log_signal(value)); |
| |
| int result_idx = -1; |
| for (size_t i = 0; i < results.size(); i++) { |
| if (results[i].front().bit == value) { |
| result_idx = i; |
| break; |
| } |
| } |
| |
| if (result_idx == -1) { |
| result_idx = results.size(); |
| results.push_back(std::vector<equiv_bit_t>()); |
| equiv_bit_t bit; |
| bit.depth = 0; |
| bit.inverted = false; |
| bit.drv = NULL; |
| bit.bit = value; |
| results.back().push_back(bit); |
| } |
| |
| equiv_bit_t bit; |
| bit.depth = 1; |
| bit.inverted = false; |
| bit.drv = drivers.count(out_bits[idx]) ? drivers.at(out_bits[idx]).first : NULL; |
| bit.bit = out_bits[idx]; |
| results[result_idx].push_back(bit); |
| } |
| |
| void analyze(std::vector<std::set<int>> &results, std::map<int, int> &results_map, std::vector<int> &bucket, std::string indent1, std::string indent2) |
| { |
| std::string indent = indent1 + indent2; |
| const char *indt = indent.c_str(); |
| |
| if (bucket.size() <= 1) |
| return; |
| |
| if (verbose_level == 1) |
| log("%s Trying to shatter bucket with %d signals.\n", indt, int(bucket.size())); |
| |
| if (verbose_level > 1) { |
| std::vector<RTLIL::SigBit> bucket_sigbits; |
| for (int idx : bucket) |
| bucket_sigbits.push_back(out_bits[idx]); |
| log("%s Trying to shatter bucket with %d signals: %s\n", indt, int(bucket.size()), log_signal(bucket_sigbits)); |
| } |
| |
| std::vector<int> sat_set_list, sat_clr_list; |
| for (int idx : bucket) { |
| sat_set_list.push_back(ez->AND(sat_out[idx], sat_def[idx])); |
| sat_clr_list.push_back(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); |
| } |
| |
| std::vector<int> modelVars = sat_out; |
| std::vector<bool> model; |
| |
| modelVars.insert(modelVars.end(), sat_def.begin(), sat_def.end()); |
| if (verbose_level >= 2) |
| modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end()); |
| |
| if (ez->solve(modelVars, model, ez->expression(ezSAT::OpOr, sat_set_list), ez->expression(ezSAT::OpOr, sat_clr_list))) |
| { |
| int iter_count = 1; |
| |
| while (1) |
| { |
| sat_set_list.clear(); |
| sat_clr_list.clear(); |
| |
| std::vector<int> sat_def_list; |
| |
| for (int idx : bucket) |
| if (!model[sat_out.size() + idx]) { |
| sat_set_list.push_back(ez->AND(sat_out[idx], sat_def[idx])); |
| sat_clr_list.push_back(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); |
| } else { |
| sat_def_list.push_back(sat_def[idx]); |
| } |
| |
| if (!ez->solve(modelVars, model, ez->expression(ezSAT::OpOr, sat_set_list), ez->expression(ezSAT::OpOr, sat_clr_list), ez->expression(ezSAT::OpAnd, sat_def_list))) |
| break; |
| iter_count++; |
| } |
| |
| if (verbose_level >= 1) { |
| int count_set = 0, count_clr = 0, count_undef = 0; |
| for (int idx : bucket) |
| if (!model[sat_out.size() + idx]) |
| count_undef++; |
| else if (model[idx]) |
| count_set++; |
| else |
| count_clr++; |
| log("%s After %d iterations: %d set vs. %d clr vs %d undef\n", indt, iter_count, count_set, count_clr, count_undef); |
| } |
| |
| if (verbose_level >= 2) { |
| for (size_t i = 0; i < pi_bits.size(); i++) |
| log("%s -> PI %c == %s\n", indt, model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i])); |
| for (int idx : bucket) |
| log("%s -> OUT %c == %s%s\n", indt, model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x', |
| out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx])); |
| } |
| |
| std::vector<int> buckets_a; |
| std::vector<int> buckets_b; |
| |
| for (int idx : bucket) { |
| if (!model[sat_out.size() + idx] || model[idx]) |
| buckets_a.push_back(idx); |
| if (!model[sat_out.size() + idx] || !model[idx]) |
| buckets_b.push_back(idx); |
| } |
| analyze(results, results_map, buckets_a, indent1 + ".", indent2 + " "); |
| analyze(results, results_map, buckets_b, indent1 + "x", indent2 + " "); |
| } |
| else |
| { |
| std::vector<int> undef_slaves; |
| |
| for (int idx : bucket) { |
| std::vector<int> sat_def_list; |
| for (int idx2 : bucket) |
| if (idx != idx2) |
| sat_def_list.push_back(sat_def[idx2]); |
| if (ez->solve(ez->NOT(sat_def[idx]), ez->expression(ezSAT::OpOr, sat_def_list))) |
| undef_slaves.push_back(idx); |
| } |
| |
| if (undef_slaves.size() == bucket.size()) { |
| if (verbose_level >= 1) |
| log("%s Complex undef overlap. None of the signals covers the others.\n", indt); |
| // FIXME: We could try to further shatter a group with complex undef overlaps |
| return; |
| } |
| |
| for (int idx : undef_slaves) |
| out_depth[idx] = std::numeric_limits<int>::max(); |
| |
| if (verbose_level >= 1) { |
| log("%s Found %d equivalent signals:", indt, int(bucket.size())); |
| for (int idx : bucket) |
| log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx])); |
| log("\n"); |
| } |
| |
| int result_idx = -1; |
| for (int idx : bucket) { |
| if (results_map.count(idx) == 0) |
| continue; |
| if (result_idx == -1) { |
| result_idx = results_map.at(idx); |
| continue; |
| } |
| int result_idx2 = results_map.at(idx); |
| results[result_idx].insert(results[result_idx2].begin(), results[result_idx2].end()); |
| for (int idx2 : results[result_idx2]) |
| results_map[idx2] = result_idx; |
| results[result_idx2].clear(); |
| } |
| |
| if (result_idx == -1) { |
| result_idx = results.size(); |
| results.push_back(std::set<int>()); |
| } |
| |
| results[result_idx].insert(bucket.begin(), bucket.end()); |
| } |
| } |
| |
| void analyze(std::vector<std::vector<equiv_bit_t>> &results, int perc) |
| { |
| std::vector<int> bucket; |
| for (size_t i = 0; i < sat_out.size(); i++) |
| bucket.push_back(i); |
| |
| std::vector<std::set<int>> results_buf; |
| std::map<int, int> results_map; |
| analyze(results_buf, results_map, bucket, stringf("[%2d%%] %d ", perc, cone_size), ""); |
| |
| for (auto &r : results_buf) |
| { |
| if (r.size() <= 1) |
| continue; |
| |
| if (verbose_level >= 1) { |
| std::vector<RTLIL::SigBit> r_sigbits; |
| for (int idx : r) |
| r_sigbits.push_back(out_bits[idx]); |
| log(" Found group of %d equivalent signals: %s\n", int(r.size()), log_signal(r_sigbits)); |
| } |
| |
| std::vector<int> undef_slaves; |
| |
| for (int idx : r) { |
| std::vector<int> sat_def_list; |
| for (int idx2 : r) |
| if (idx != idx2) |
| sat_def_list.push_back(sat_def[idx2]); |
| if (ez->solve(ez->NOT(sat_def[idx]), ez->expression(ezSAT::OpOr, sat_def_list))) |
| undef_slaves.push_back(idx); |
| } |
| |
| if (undef_slaves.size() == bucket.size()) { |
| if (verbose_level >= 1) |
| log(" Complex undef overlap. None of the signals covers the others.\n"); |
| // FIXME: We could try to further shatter a group with complex undef overlaps |
| return; |
| } |
| |
| for (int idx : undef_slaves) |
| out_depth[idx] = std::numeric_limits<int>::max(); |
| |
| std::vector<equiv_bit_t> result; |
| |
| for (int idx : r) { |
| equiv_bit_t bit; |
| bit.depth = out_depth[idx]; |
| bit.inverted = out_inverted[idx]; |
| bit.drv = drivers.count(out_bits[idx]) ? drivers.at(out_bits[idx]).first : NULL; |
| bit.bit = out_bits[idx]; |
| result.push_back(bit); |
| } |
| |
| std::sort(result.begin(), result.end()); |
| |
| if (result.front().inverted) |
| for (auto &bit : result) |
| bit.inverted = !bit.inverted; |
| |
| for (size_t i = 1; i < result.size(); i++) { |
| std::pair<RTLIL::SigBit, RTLIL::SigBit> p(result[0].bit, result[i].bit); |
| if (inv_pairs.count(p) != 0) |
| result.erase(result.begin() + i); |
| } |
| |
| if (result.size() > 1) |
| results.push_back(result); |
| } |
| } |
| }; |
| |
| struct FreduceWorker |
| { |
| RTLIL::Design *design; |
| RTLIL::Module *module; |
| |
| SigMap sigmap; |
| drivers_t drivers; |
| std::set<std::pair<RTLIL::SigBit, RTLIL::SigBit>> inv_pairs; |
| |
| FreduceWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module) |
| { |
| } |
| |
| bool find_bit_in_cone(std::set<RTLIL::Cell*> &celldone, RTLIL::SigBit needle, RTLIL::SigBit haystack) |
| { |
| if (needle == haystack) |
| return true; |
| if (haystack.wire == NULL || needle.wire == NULL || drivers.count(haystack) == 0) |
| return false; |
| |
| std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> &drv = drivers.at(haystack); |
| |
| if (celldone.count(drv.first)) |
| return false; |
| celldone.insert(drv.first); |
| |
| for (auto &bit : drv.second) |
| if (find_bit_in_cone(celldone, needle, bit)) |
| return true; |
| return false; |
| } |
| |
| bool find_bit_in_cone(RTLIL::SigBit needle, RTLIL::SigBit haystack) |
| { |
| std::set<RTLIL::Cell*> celldone; |
| return find_bit_in_cone(celldone, needle, haystack); |
| } |
| |
| void dump() |
| { |
| std::string filename = stringf("%s_%s_%05d.il", dump_prefix.c_str(), RTLIL::id2cstr(module->name), reduce_counter); |
| log("%s Writing dump file `%s'.\n", reduce_counter ? " " : "", filename.c_str()); |
| Pass::call(design, stringf("dump -outfile %s %s", filename.c_str(), design->selected_active_module.empty() ? module->name.c_str() : "")); |
| } |
| |
| int run() |
| { |
| log("Running functional reduction on module %s:\n", RTLIL::id2cstr(module->name)); |
| |
| CellTypes ct; |
| ct.setup_internals(); |
| ct.setup_stdcells(); |
| |
| int bits_full_total = 0; |
| std::vector<std::set<RTLIL::SigBit>> batches; |
| for (auto &it : module->wires_) |
| if (it.second->port_input) { |
| batches.push_back(sigmap(it.second).to_sigbit_set()); |
| bits_full_total += it.second->width; |
| } |
| for (auto &it : module->cells_) { |
| if (ct.cell_known(it.second->type)) { |
| std::set<RTLIL::SigBit> inputs, outputs; |
| for (auto &port : it.second->connections()) { |
| std::vector<RTLIL::SigBit> bits = sigmap(port.second).to_sigbit_vector(); |
| if (ct.cell_output(it.second->type, port.first)) |
| outputs.insert(bits.begin(), bits.end()); |
| else |
| inputs.insert(bits.begin(), bits.end()); |
| } |
| std::pair<RTLIL::Cell*, std::set<RTLIL::SigBit>> drv(it.second, inputs); |
| for (auto &bit : outputs) |
| drivers[bit] = drv; |
| batches.push_back(outputs); |
| bits_full_total += outputs.size(); |
| } |
| if (inv_mode && it.second->type == "$_NOT_") |
| inv_pairs.insert(std::pair<RTLIL::SigBit, RTLIL::SigBit>(sigmap(it.second->getPort("\\A")), sigmap(it.second->getPort("\\Y")))); |
| } |
| |
| int bits_count = 0; |
| int bits_full_count = 0; |
| std::map<std::vector<RTLIL::SigBit>, std::vector<RTLIL::SigBit>> buckets; |
| for (auto &batch : batches) |
| { |
| for (auto &bit : batch) |
| if (bit.wire != NULL && design->selected(module, bit.wire)) |
| goto found_selected_wire; |
| bits_full_count += batch.size(); |
| continue; |
| |
| found_selected_wire: |
| log(" Finding reduced input cone for signal batch %s%c\n", |
| log_signal(batch), verbose_level ? ':' : '.'); |
| |
| FindReducedInputs infinder(sigmap, drivers); |
| for (auto &bit : batch) { |
| std::vector<RTLIL::SigBit> inputs; |
| infinder.analyze(inputs, bit, 100 * bits_full_count / bits_full_total); |
| buckets[inputs].push_back(bit); |
| bits_full_count++; |
| bits_count++; |
| } |
| } |
| log(" Sorted %d signal bits into %d buckets.\n", bits_count, int(buckets.size())); |
| |
| int bucket_count = 0; |
| std::vector<std::vector<equiv_bit_t>> equiv; |
| for (auto &bucket : buckets) |
| { |
| bucket_count++; |
| |
| if (bucket.second.size() == 1) |
| continue; |
| |
| if (bucket.first.size() == 0) { |
| log(" Finding const values for bucket %s%c\n", log_signal(bucket.second), verbose_level ? ':' : '.'); |
| PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size()); |
| for (size_t idx = 0; idx < bucket.second.size(); idx++) |
| worker.analyze_const(equiv, idx); |
| } else { |
| log(" Trying to shatter bucket %s%c\n", log_signal(bucket.second), verbose_level ? ':' : '.'); |
| PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size()); |
| worker.analyze(equiv, 100 * bucket_count / (buckets.size() + 1)); |
| } |
| } |
| |
| std::map<RTLIL::SigBit, int> bitusage; |
| CountBitUsage bitusage_worker(sigmap, bitusage); |
| module->rewrite_sigspecs(bitusage_worker); |
| |
| if (!dump_prefix.empty()) |
| dump(); |
| |
| log(" Rewiring %d equivalent groups:\n", int(equiv.size())); |
| int rewired_sigbits = 0; |
| for (auto &grp : equiv) |
| { |
| log(" [%05d] Using as master for group: %s\n", ++reduce_counter, log_signal(grp.front().bit)); |
| |
| RTLIL::SigSpec inv_sig; |
| for (size_t i = 1; i < grp.size(); i++) |
| { |
| if (!design->selected(module, grp[i].bit.wire)) { |
| log(" Skipping not-selected slave: %s\n", log_signal(grp[i].bit)); |
| continue; |
| } |
| |
| if (grp[i].bit.wire->port_id == 0 && bitusage[grp[i].bit] <= 1) { |
| log(" Skipping unused slave: %s\n", log_signal(grp[i].bit)); |
| continue; |
| } |
| |
| if (find_bit_in_cone(grp[i].bit, grp.front().bit)) { |
| log(" Skipping dependency of master: %s\n", log_signal(grp[i].bit)); |
| continue; |
| } |
| |
| log(" Connect slave%s: %s\n", grp[i].inverted ? " using inverter" : "", log_signal(grp[i].bit)); |
| |
| RTLIL::Cell *drv = drivers.at(grp[i].bit).first; |
| RTLIL::Wire *dummy_wire = module->addWire(NEW_ID); |
| for (auto &port : drv->connections_) |
| if (ct.cell_output(drv->type, port.first)) |
| sigmap(port.second).replace(grp[i].bit, dummy_wire, &port.second); |
| |
| if (grp[i].inverted) |
| { |
| if (inv_sig.size() == 0) |
| { |
| inv_sig = module->addWire(NEW_ID); |
| |
| RTLIL::Cell *inv_cell = module->addCell(NEW_ID, "$_NOT_"); |
| inv_cell->setPort("\\A", grp[0].bit); |
| inv_cell->setPort("\\Y", inv_sig); |
| } |
| |
| module->connect(RTLIL::SigSig(grp[i].bit, inv_sig)); |
| } |
| else |
| module->connect(RTLIL::SigSig(grp[i].bit, grp[0].bit)); |
| |
| rewired_sigbits++; |
| } |
| |
| if (!dump_prefix.empty()) |
| dump(); |
| |
| if (reduce_counter == reduce_stop_at) { |
| log(" Reached limit passed using -stop option. Skipping all further reductions.\n"); |
| break; |
| } |
| } |
| |
| log(" Rewired a total of %d signal bits in module %s.\n", rewired_sigbits, RTLIL::id2cstr(module->name)); |
| return rewired_sigbits; |
| } |
| }; |
| |
| struct FreducePass : public Pass { |
| FreducePass() : Pass("freduce", "perform functional reduction") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" freduce [options] [selection]\n"); |
| log("\n"); |
| log("This pass performs functional reduction in the circuit. I.e. if two nodes are\n"); |
| log("equivalent, they are merged to one node and one of the redundant drivers is\n"); |
| log("disconnected. A subsequent call to 'clean' will remove the redundant drivers.\n"); |
| log("\n"); |
| log(" -v, -vv\n"); |
| log(" enable verbose or very verbose output\n"); |
| log("\n"); |
| log(" -inv\n"); |
| log(" enable explicit handling of inverted signals\n"); |
| log("\n"); |
| log(" -stop <n>\n"); |
| log(" stop after <n> reduction operations. this is mostly used for\n"); |
| log(" debugging the freduce command itself.\n"); |
| log("\n"); |
| log(" -dump <prefix>\n"); |
| log(" dump the design to <prefix>_<module>_<num>.il after each reduction\n"); |
| log(" operation. this is mostly used for debugging the freduce command.\n"); |
| log("\n"); |
| log("This pass is undef-aware, i.e. it considers don't-care values for detecting\n"); |
| log("equivalent nodes.\n"); |
| log("\n"); |
| log("All selected wires are considered for rewiring. The selected cells cover the\n"); |
| log("circuit that is analyzed.\n"); |
| log("\n"); |
| } |
| void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE |
| { |
| reduce_counter = 0; |
| reduce_stop_at = 0; |
| verbose_level = 0; |
| inv_mode = false; |
| dump_prefix = std::string(); |
| |
| log_header(design, "Executing FREDUCE pass (perform functional reduction).\n"); |
| |
| size_t argidx; |
| for (argidx = 1; argidx < args.size(); argidx++) { |
| if (args[argidx] == "-v") { |
| verbose_level = 1; |
| continue; |
| } |
| if (args[argidx] == "-vv") { |
| verbose_level = 2; |
| continue; |
| } |
| if (args[argidx] == "-inv") { |
| inv_mode = true; |
| continue; |
| } |
| if (args[argidx] == "-stop" && argidx+1 < args.size()) { |
| reduce_stop_at = atoi(args[++argidx].c_str()); |
| continue; |
| } |
| if (args[argidx] == "-dump" && argidx+1 < args.size()) { |
| dump_prefix = args[++argidx]; |
| continue; |
| } |
| break; |
| } |
| extra_args(args, argidx, design); |
| |
| int bitcount = 0; |
| for (auto &mod_it : design->modules_) { |
| RTLIL::Module *module = mod_it.second; |
| if (design->selected(module)) |
| bitcount += FreduceWorker(design, module).run(); |
| } |
| |
| log("Rewired a total of %d signal bits.\n", bitcount); |
| } |
| } FreducePass; |
| |
| PRIVATE_NAMESPACE_END |