| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/yosys.h" |
| #include "kernel/sigtools.h" |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| #define COST_DMUX 90 |
| #define COST_MUX2 100 |
| #define COST_MUX4 220 |
| #define COST_MUX8 460 |
| #define COST_MUX16 940 |
| |
| struct MuxcoverWorker |
| { |
| Module *module; |
| SigMap sigmap; |
| |
| struct newmux_t |
| { |
| int cost; |
| vector<SigBit> inputs, selects; |
| newmux_t() : cost(0) {} |
| }; |
| |
| struct tree_t |
| { |
| SigBit root; |
| dict<SigBit, Cell*> muxes; |
| dict<SigBit, newmux_t> newmuxes; |
| }; |
| |
| vector<tree_t> tree_list; |
| |
| dict<tuple<SigBit, SigBit, SigBit>, tuple<SigBit, pool<SigBit>, bool>> decode_mux_cache; |
| dict<SigBit, tuple<SigBit, SigBit, SigBit>> decode_mux_reverse_cache; |
| int decode_mux_counter; |
| |
| bool use_mux4; |
| bool use_mux8; |
| bool use_mux16; |
| bool nodecode; |
| bool nopartial; |
| |
| int cost_dmux; |
| int cost_mux2; |
| int cost_mux4; |
| int cost_mux8; |
| int cost_mux16; |
| |
| MuxcoverWorker(Module *module) : module(module), sigmap(module) |
| { |
| use_mux4 = false; |
| use_mux8 = false; |
| use_mux16 = false; |
| nodecode = false; |
| nopartial = false; |
| cost_dmux = COST_DMUX; |
| cost_mux2 = COST_MUX2; |
| cost_mux4 = COST_MUX4; |
| cost_mux8 = COST_MUX8; |
| cost_mux16 = COST_MUX16; |
| decode_mux_counter = 0; |
| } |
| |
| bool xcmp(std::initializer_list<SigBit> list) |
| { |
| auto cursor = list.begin(), end = list.end(); |
| log_assert(cursor != end); |
| SigBit tmp = *(cursor++); |
| while (cursor != end) { |
| SigBit bit = *(cursor++); |
| if (bit == State::Sx) |
| continue; |
| if (tmp == State::Sx) |
| tmp = bit; |
| if (bit != tmp) |
| return false; |
| } |
| return true; |
| } |
| |
| void treeify() |
| { |
| pool<SigBit> roots; |
| pool<SigBit> used_once; |
| dict<SigBit, Cell*> sig_to_mux; |
| |
| for (auto wire : module->wires()) { |
| if (!wire->port_output) |
| continue; |
| for (auto bit : sigmap(wire)) |
| roots.insert(bit); |
| } |
| |
| for (auto cell : module->cells()) { |
| for (auto conn : cell->connections()) { |
| if (!cell->input(conn.first)) |
| continue; |
| for (auto bit : sigmap(conn.second)) { |
| if (used_once.count(bit) || cell->type != ID($_MUX_) || conn.first == ID(S)) |
| roots.insert(bit); |
| used_once.insert(bit); |
| } |
| } |
| if (cell->type == ID($_MUX_)) |
| sig_to_mux[sigmap(cell->getPort(ID::Y))] = cell; |
| } |
| |
| log(" Treeifying %d MUXes:\n", GetSize(sig_to_mux)); |
| |
| roots.sort(); |
| for (auto rootsig : roots) |
| { |
| tree_t tree; |
| tree.root = rootsig; |
| |
| pool<SigBit> wavefront; |
| wavefront.insert(rootsig); |
| |
| while (!wavefront.empty()) { |
| SigBit bit = wavefront.pop(); |
| if (sig_to_mux.count(bit) && (bit == rootsig || !roots.count(bit))) { |
| Cell *c = sig_to_mux.at(bit); |
| tree.muxes[bit] = c; |
| wavefront.insert(sigmap(c->getPort(ID::A))); |
| wavefront.insert(sigmap(c->getPort(ID::B))); |
| } |
| } |
| |
| if (!tree.muxes.empty()) { |
| log(" Found tree with %d MUXes at root %s.\n", GetSize(tree.muxes), log_signal(tree.root)); |
| tree_list.push_back(tree); |
| } |
| } |
| |
| log(" Finished treeification: Found %d trees.\n", GetSize(tree_list)); |
| } |
| |
| bool follow_muxtree(SigBit &ret_bit, tree_t &tree, SigBit bit, const char *path, bool first_layer = true) |
| { |
| if (*path) { |
| if (tree.muxes.count(bit) == 0) { |
| if (first_layer || nopartial) |
| return false; |
| while (path[0] && path[1]) |
| path++; |
| if (path[0] == 'S') |
| ret_bit = State::Sx; |
| else |
| ret_bit = bit; |
| return true; |
| } |
| char port_name[3] = {'\\', *path, 0}; |
| return follow_muxtree(ret_bit, tree, sigmap(tree.muxes.at(bit)->getPort(port_name)), path+1, false); |
| } else { |
| ret_bit = bit; |
| return true; |
| } |
| } |
| |
| int prepare_decode_mux(SigBit &A, SigBit B, SigBit sel, SigBit bit) |
| { |
| if (A == B || sel == State::Sx) |
| return 0; |
| |
| tuple<SigBit, SigBit, SigBit> key(A, B, sel); |
| if (decode_mux_cache.count(key) == 0) { |
| auto &entry = decode_mux_cache[key]; |
| std::get<0>(entry) = module->addWire(NEW_ID); |
| std::get<2>(entry) = false; |
| decode_mux_reverse_cache[std::get<0>(entry)] = key; |
| } |
| |
| auto &entry = decode_mux_cache[key]; |
| A = std::get<0>(entry); |
| std::get<1>(entry).insert(bit); |
| |
| if (std::get<2>(entry)) |
| return 0; |
| |
| if (A == State::Sx || B == State::Sx) |
| return 0; |
| |
| return cost_dmux / GetSize(std::get<1>(entry)); |
| } |
| |
| void implement_decode_mux(SigBit ctrl_bit) |
| { |
| if (decode_mux_reverse_cache.count(ctrl_bit) == 0) |
| return; |
| |
| auto &key = decode_mux_reverse_cache.at(ctrl_bit); |
| auto &entry = decode_mux_cache[key]; |
| |
| if (std::get<2>(entry)) |
| return; |
| |
| implement_decode_mux(std::get<0>(key)); |
| implement_decode_mux(std::get<1>(key)); |
| |
| if (std::get<0>(key) == State::Sx) { |
| module->addBufGate(NEW_ID, std::get<1>(key), ctrl_bit); |
| } else if (std::get<1>(key) == State::Sx) { |
| module->addBufGate(NEW_ID, std::get<0>(key), ctrl_bit); |
| } else { |
| module->addMuxGate(NEW_ID, std::get<0>(key), std::get<1>(key), std::get<2>(key), ctrl_bit); |
| decode_mux_counter++; |
| } |
| std::get<2>(entry) = true; |
| } |
| |
| void find_best_covers(tree_t &tree, const vector<SigBit> &bits) |
| { |
| for (auto bit : bits) |
| find_best_cover(tree, bit); |
| } |
| |
| int sum_best_covers(tree_t &tree, const vector<SigBit> &bits) |
| { |
| int sum = 0; |
| for (auto bit : pool<SigBit>(bits.begin(), bits.end())) { |
| int cost = tree.newmuxes.at(bit).cost; |
| log_debug(" Best cost for %s: %d\n", log_signal(bit), cost); |
| sum += cost; |
| } |
| return sum; |
| } |
| |
| int find_best_cover(tree_t &tree, SigBit bit) |
| { |
| if (tree.newmuxes.count(bit)) { |
| return tree.newmuxes.at(bit).cost; |
| } |
| |
| SigBit A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P; |
| SigBit S1, S2, S3, S4, S5, S6, S7, S8; |
| SigBit T1, T2, T3, T4; |
| SigBit U1, U2; |
| SigBit V1; |
| |
| newmux_t best_mux; |
| bool ok = true; |
| |
| // 2-Input MUX |
| |
| ok = ok && follow_muxtree(A, tree, bit, "A"); |
| ok = ok && follow_muxtree(B, tree, bit, "B"); |
| |
| ok = ok && follow_muxtree(S1, tree, bit, "S"); |
| |
| if (ok) |
| { |
| newmux_t mux; |
| |
| mux.inputs.push_back(A); |
| mux.inputs.push_back(B); |
| mux.selects.push_back(S1); |
| |
| find_best_covers(tree, mux.inputs); |
| log_debug(" Decode cost for mux2 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| mux.cost += cost_mux2; |
| mux.cost += sum_best_covers(tree, mux.inputs); |
| |
| log_debug(" Cost of mux2 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| best_mux = mux; |
| } |
| |
| // 4-Input MUX |
| |
| if (use_mux4) |
| { |
| ok = ok && follow_muxtree(A, tree, bit, "AA"); |
| ok = ok && follow_muxtree(B, tree, bit, "AB"); |
| ok = ok && follow_muxtree(C, tree, bit, "BA"); |
| ok = ok && follow_muxtree(D, tree, bit, "BB"); |
| |
| ok = ok && follow_muxtree(S1, tree, bit, "AS"); |
| ok = ok && follow_muxtree(S2, tree, bit, "BS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({S1, S2}); |
| |
| ok = ok && follow_muxtree(T1, tree, bit, "S"); |
| |
| if (ok) |
| { |
| newmux_t mux; |
| |
| mux.inputs.push_back(A); |
| mux.inputs.push_back(B); |
| mux.inputs.push_back(C); |
| mux.inputs.push_back(D); |
| |
| mux.cost += prepare_decode_mux(S1, S2, T1, bit); |
| |
| mux.selects.push_back(S1); |
| mux.selects.push_back(T1); |
| |
| find_best_covers(tree, mux.inputs); |
| log_debug(" Decode cost for mux4 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| mux.cost += cost_mux4; |
| mux.cost += sum_best_covers(tree, mux.inputs); |
| |
| log_debug(" Cost of mux4 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| if (best_mux.cost >= mux.cost) |
| best_mux = mux; |
| } |
| } |
| |
| // 8-Input MUX |
| |
| if (use_mux8) |
| { |
| ok = ok && follow_muxtree(A, tree, bit, "AAA"); |
| ok = ok && follow_muxtree(B, tree, bit, "AAB"); |
| ok = ok && follow_muxtree(C, tree, bit, "ABA"); |
| ok = ok && follow_muxtree(D, tree, bit, "ABB"); |
| ok = ok && follow_muxtree(E, tree, bit, "BAA"); |
| ok = ok && follow_muxtree(F, tree, bit, "BAB"); |
| ok = ok && follow_muxtree(G, tree, bit, "BBA"); |
| ok = ok && follow_muxtree(H, tree, bit, "BBB"); |
| |
| ok = ok && follow_muxtree(S1, tree, bit, "AAS"); |
| ok = ok && follow_muxtree(S2, tree, bit, "ABS"); |
| ok = ok && follow_muxtree(S3, tree, bit, "BAS"); |
| ok = ok && follow_muxtree(S4, tree, bit, "BBS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({S1, S2, S3, S4}); |
| |
| ok = ok && follow_muxtree(T1, tree, bit, "AS"); |
| ok = ok && follow_muxtree(T2, tree, bit, "BS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({T1, T2}); |
| |
| ok = ok && follow_muxtree(U1, tree, bit, "S"); |
| |
| if (ok) |
| { |
| newmux_t mux; |
| |
| mux.inputs.push_back(A); |
| mux.inputs.push_back(B); |
| mux.inputs.push_back(C); |
| mux.inputs.push_back(D); |
| mux.inputs.push_back(E); |
| mux.inputs.push_back(F); |
| mux.inputs.push_back(G); |
| mux.inputs.push_back(H); |
| |
| mux.cost += prepare_decode_mux(S1, S2, T1, bit); |
| mux.cost += prepare_decode_mux(S3, S4, T2, bit); |
| mux.cost += prepare_decode_mux(S1, S3, U1, bit); |
| |
| mux.cost += prepare_decode_mux(T1, T2, U1, bit); |
| |
| mux.selects.push_back(S1); |
| mux.selects.push_back(T1); |
| mux.selects.push_back(U1); |
| |
| find_best_covers(tree, mux.inputs); |
| log_debug(" Decode cost for mux8 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| mux.cost += cost_mux8; |
| mux.cost += sum_best_covers(tree, mux.inputs); |
| |
| log_debug(" Cost of mux8 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| if (best_mux.cost >= mux.cost) |
| best_mux = mux; |
| } |
| } |
| |
| // 16-Input MUX |
| |
| if (use_mux16) |
| { |
| ok = ok && follow_muxtree(A, tree, bit, "AAAA"); |
| ok = ok && follow_muxtree(B, tree, bit, "AAAB"); |
| ok = ok && follow_muxtree(C, tree, bit, "AABA"); |
| ok = ok && follow_muxtree(D, tree, bit, "AABB"); |
| ok = ok && follow_muxtree(E, tree, bit, "ABAA"); |
| ok = ok && follow_muxtree(F, tree, bit, "ABAB"); |
| ok = ok && follow_muxtree(G, tree, bit, "ABBA"); |
| ok = ok && follow_muxtree(H, tree, bit, "ABBB"); |
| ok = ok && follow_muxtree(I, tree, bit, "BAAA"); |
| ok = ok && follow_muxtree(J, tree, bit, "BAAB"); |
| ok = ok && follow_muxtree(K, tree, bit, "BABA"); |
| ok = ok && follow_muxtree(L, tree, bit, "BABB"); |
| ok = ok && follow_muxtree(M, tree, bit, "BBAA"); |
| ok = ok && follow_muxtree(N, tree, bit, "BBAB"); |
| ok = ok && follow_muxtree(O, tree, bit, "BBBA"); |
| ok = ok && follow_muxtree(P, tree, bit, "BBBB"); |
| |
| ok = ok && follow_muxtree(S1, tree, bit, "AAAS"); |
| ok = ok && follow_muxtree(S2, tree, bit, "AABS"); |
| ok = ok && follow_muxtree(S3, tree, bit, "ABAS"); |
| ok = ok && follow_muxtree(S4, tree, bit, "ABBS"); |
| ok = ok && follow_muxtree(S5, tree, bit, "BAAS"); |
| ok = ok && follow_muxtree(S6, tree, bit, "BABS"); |
| ok = ok && follow_muxtree(S7, tree, bit, "BBAS"); |
| ok = ok && follow_muxtree(S8, tree, bit, "BBBS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({S1, S2, S3, S4, S5, S6, S7, S8}); |
| |
| ok = ok && follow_muxtree(T1, tree, bit, "AAS"); |
| ok = ok && follow_muxtree(T2, tree, bit, "ABS"); |
| ok = ok && follow_muxtree(T3, tree, bit, "BAS"); |
| ok = ok && follow_muxtree(T4, tree, bit, "BBS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({T1, T2, T3, T4}); |
| |
| ok = ok && follow_muxtree(U1, tree, bit, "AS"); |
| ok = ok && follow_muxtree(U2, tree, bit, "BS"); |
| |
| if (nodecode) |
| ok = ok && xcmp({U1, U2}); |
| |
| ok = ok && follow_muxtree(V1, tree, bit, "S"); |
| |
| if (ok) |
| { |
| newmux_t mux; |
| |
| mux.inputs.push_back(A); |
| mux.inputs.push_back(B); |
| mux.inputs.push_back(C); |
| mux.inputs.push_back(D); |
| mux.inputs.push_back(E); |
| mux.inputs.push_back(F); |
| mux.inputs.push_back(G); |
| mux.inputs.push_back(H); |
| mux.inputs.push_back(I); |
| mux.inputs.push_back(J); |
| mux.inputs.push_back(K); |
| mux.inputs.push_back(L); |
| mux.inputs.push_back(M); |
| mux.inputs.push_back(N); |
| mux.inputs.push_back(O); |
| mux.inputs.push_back(P); |
| |
| mux.cost += prepare_decode_mux(S1, S2, T1, bit); |
| mux.cost += prepare_decode_mux(S3, S4, T2, bit); |
| mux.cost += prepare_decode_mux(S5, S6, T3, bit); |
| mux.cost += prepare_decode_mux(S7, S8, T4, bit); |
| mux.cost += prepare_decode_mux(S1, S3, U1, bit); |
| mux.cost += prepare_decode_mux(S5, S7, U2, bit); |
| mux.cost += prepare_decode_mux(S1, S5, V1, bit); |
| |
| mux.cost += prepare_decode_mux(T1, T2, U1, bit); |
| mux.cost += prepare_decode_mux(T3, T4, U2, bit); |
| mux.cost += prepare_decode_mux(T1, T3, V1, bit); |
| |
| mux.cost += prepare_decode_mux(U1, U2, V1, bit); |
| |
| mux.selects.push_back(S1); |
| mux.selects.push_back(T1); |
| mux.selects.push_back(U1); |
| mux.selects.push_back(V1); |
| |
| find_best_covers(tree, mux.inputs); |
| log_debug(" Decode cost for mux16 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| mux.cost += cost_mux16; |
| mux.cost += sum_best_covers(tree, mux.inputs); |
| |
| log_debug(" Cost of mux16 at %s: %d\n", log_signal(bit), mux.cost); |
| |
| if (best_mux.cost >= mux.cost) |
| best_mux = mux; |
| } |
| } |
| |
| tree.newmuxes[bit] = best_mux; |
| return best_mux.cost; |
| } |
| |
| void implement_best_cover(tree_t &tree, SigBit bit, int count_muxes_by_type[4]) |
| { |
| newmux_t mux = tree.newmuxes.at(bit); |
| |
| for (auto inbit : mux.inputs) |
| implement_best_cover(tree, inbit, count_muxes_by_type); |
| |
| for (auto selbit : mux.selects) |
| implement_decode_mux(selbit); |
| |
| if (GetSize(mux.inputs) == 0) |
| return; |
| |
| if (GetSize(mux.inputs) == 2) { |
| count_muxes_by_type[0]++; |
| Cell *cell = module->addCell(NEW_ID, ID($_MUX_)); |
| cell->setPort(ID::A, mux.inputs[0]); |
| cell->setPort(ID::B, mux.inputs[1]); |
| cell->setPort(ID(S), mux.selects[0]); |
| cell->setPort(ID::Y, bit); |
| return; |
| } |
| |
| if (GetSize(mux.inputs) == 4) { |
| count_muxes_by_type[1]++; |
| Cell *cell = module->addCell(NEW_ID, ID($_MUX4_)); |
| cell->setPort(ID::A, mux.inputs[0]); |
| cell->setPort(ID::B, mux.inputs[1]); |
| cell->setPort(ID(C), mux.inputs[2]); |
| cell->setPort(ID(D), mux.inputs[3]); |
| cell->setPort(ID(S), mux.selects[0]); |
| cell->setPort(ID(T), mux.selects[1]); |
| cell->setPort(ID::Y, bit); |
| return; |
| } |
| |
| if (GetSize(mux.inputs) == 8) { |
| count_muxes_by_type[2]++; |
| Cell *cell = module->addCell(NEW_ID, ID($_MUX8_)); |
| cell->setPort(ID::A, mux.inputs[0]); |
| cell->setPort(ID::B, mux.inputs[1]); |
| cell->setPort(ID(C), mux.inputs[2]); |
| cell->setPort(ID(D), mux.inputs[3]); |
| cell->setPort(ID(E), mux.inputs[4]); |
| cell->setPort(ID(F), mux.inputs[5]); |
| cell->setPort(ID(G), mux.inputs[6]); |
| cell->setPort(ID(H), mux.inputs[7]); |
| cell->setPort(ID(S), mux.selects[0]); |
| cell->setPort(ID(T), mux.selects[1]); |
| cell->setPort(ID(U), mux.selects[2]); |
| cell->setPort(ID::Y, bit); |
| return; |
| } |
| |
| if (GetSize(mux.inputs) == 16) { |
| count_muxes_by_type[3]++; |
| Cell *cell = module->addCell(NEW_ID, ID($_MUX16_)); |
| cell->setPort(ID::A, mux.inputs[0]); |
| cell->setPort(ID::B, mux.inputs[1]); |
| cell->setPort(ID(C), mux.inputs[2]); |
| cell->setPort(ID(D), mux.inputs[3]); |
| cell->setPort(ID(E), mux.inputs[4]); |
| cell->setPort(ID(F), mux.inputs[5]); |
| cell->setPort(ID(G), mux.inputs[6]); |
| cell->setPort(ID(H), mux.inputs[7]); |
| cell->setPort(ID(I), mux.inputs[8]); |
| cell->setPort(ID(J), mux.inputs[9]); |
| cell->setPort(ID(K), mux.inputs[10]); |
| cell->setPort(ID(L), mux.inputs[11]); |
| cell->setPort(ID(M), mux.inputs[12]); |
| cell->setPort(ID(N), mux.inputs[13]); |
| cell->setPort(ID(O), mux.inputs[14]); |
| cell->setPort(ID(P), mux.inputs[15]); |
| cell->setPort(ID(S), mux.selects[0]); |
| cell->setPort(ID(T), mux.selects[1]); |
| cell->setPort(ID(U), mux.selects[2]); |
| cell->setPort(ID(V), mux.selects[3]); |
| cell->setPort(ID::Y, bit); |
| return; |
| } |
| |
| log_abort(); |
| } |
| |
| void treecover(tree_t &tree) |
| { |
| int count_muxes_by_type[4] = {0, 0, 0, 0}; |
| log_debug(" Searching for best cover for tree at %s.\n", log_signal(tree.root)); |
| find_best_cover(tree, tree.root); |
| implement_best_cover(tree, tree.root, count_muxes_by_type); |
| log(" Replaced tree at %s: %d MUX2, %d MUX4, %d MUX8, %d MUX16\n", log_signal(tree.root), |
| count_muxes_by_type[0], count_muxes_by_type[1], count_muxes_by_type[2], count_muxes_by_type[3]); |
| for (auto &it : tree.muxes) |
| module->remove(it.second); |
| } |
| |
| void run() |
| { |
| log("Covering MUX trees in module %s..\n", log_id(module)); |
| |
| treeify(); |
| |
| log(" Covering trees:\n"); |
| |
| if (!nodecode) { |
| log_debug(" Populating cache of decoder muxes.\n"); |
| for (auto &tree : tree_list) { |
| find_best_cover(tree, tree.root); |
| tree.newmuxes.clear(); |
| } |
| } |
| |
| for (auto &tree : tree_list) |
| treecover(tree); |
| |
| if (!nodecode) |
| log(" Added a total of %d decoder MUXes.\n", decode_mux_counter); |
| } |
| }; |
| |
| struct MuxcoverPass : public Pass { |
| MuxcoverPass() : Pass("muxcover", "cover trees of MUX cells with wider MUXes") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" muxcover [options] [selection]\n"); |
| log("\n"); |
| log("Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells\n"); |
| log("\n"); |
| log(" -mux4[=cost], -mux8[=cost], -mux16[=cost]\n"); |
| log(" Cover $_MUX_ trees using the specified types of MUXes (with optional\n"); |
| log(" integer costs). If none of these options are given, the effect is the\n"); |
| log(" same as if all of them are.\n"); |
| log(" Default costs: $_MUX4_ = %d, $_MUX8_ = %d, \n", COST_MUX4, COST_MUX8); |
| log(" $_MUX16_ = %d\n", COST_MUX16); |
| log("\n"); |
| log(" -mux2=cost\n"); |
| log(" Use the specified cost for $_MUX_ cells when making covering decisions.\n"); |
| log(" Default cost: $_MUX_ = %d\n", COST_MUX2); |
| log("\n"); |
| log(" -dmux=cost\n"); |
| log(" Use the specified cost for $_MUX_ cells used in decoders.\n"); |
| log(" Default cost: %d\n", COST_DMUX); |
| log("\n"); |
| log(" -nodecode\n"); |
| log(" Do not insert decoder logic. This reduces the number of possible\n"); |
| log(" substitutions, but guarantees that the resulting circuit is not\n"); |
| log(" less efficient than the original circuit.\n"); |
| log("\n"); |
| log(" -nopartial\n"); |
| log(" Do not consider mappings that use $_MUX<N>_ to select from less\n"); |
| log(" than <N> different signals.\n"); |
| log("\n"); |
| } |
| void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE |
| { |
| log_header(design, "Executing MUXCOVER pass (mapping to wider MUXes).\n"); |
| |
| bool use_mux4 = false; |
| bool use_mux8 = false; |
| bool use_mux16 = false; |
| bool nodecode = false; |
| bool nopartial = false; |
| int cost_dmux = COST_DMUX; |
| int cost_mux2 = COST_MUX2; |
| int cost_mux4 = COST_MUX4; |
| int cost_mux8 = COST_MUX8; |
| int cost_mux16 = COST_MUX16; |
| |
| size_t argidx; |
| for (argidx = 1; argidx < args.size(); argidx++) |
| { |
| const auto &arg = args[argidx]; |
| if (arg.size() >= 6 && arg.compare(0,6,"-mux2=") == 0) { |
| cost_mux2 = atoi(arg.substr(6).c_str()); |
| continue; |
| } |
| if (arg.size() >= 5 && arg.compare(0,5,"-mux4") == 0) { |
| use_mux4 = true; |
| if (arg.size() > 5) { |
| if (arg[5] != '=') break; |
| cost_mux4 = atoi(arg.substr(6).c_str()); |
| } |
| continue; |
| } |
| if (arg.size() >= 5 && arg.compare(0,5,"-mux8") == 0) { |
| use_mux8 = true; |
| if (arg.size() > 5) { |
| if (arg[5] != '=') break; |
| cost_mux8 = atoi(arg.substr(6).c_str()); |
| } |
| continue; |
| } |
| if (arg.size() >= 6 && arg.compare(0,6,"-mux16") == 0) { |
| use_mux16 = true; |
| if (arg.size() > 6) { |
| if (arg[6] != '=') break; |
| cost_mux16 = atoi(arg.substr(7).c_str()); |
| } |
| continue; |
| } |
| if (arg.size() >= 6 && arg.compare(0,6,"-dmux=") == 0) { |
| cost_dmux = atoi(arg.substr(6).c_str()); |
| continue; |
| } |
| if (arg == "-nodecode") { |
| nodecode = true; |
| continue; |
| } |
| if (arg == "-nopartial") { |
| nopartial = true; |
| continue; |
| } |
| break; |
| } |
| extra_args(args, argidx, design); |
| |
| if (!use_mux4 && !use_mux8 && !use_mux16) { |
| use_mux4 = true; |
| use_mux8 = true; |
| use_mux16 = true; |
| } |
| |
| for (auto module : design->selected_modules()) |
| { |
| MuxcoverWorker worker(module); |
| worker.use_mux4 = use_mux4; |
| worker.use_mux8 = use_mux8; |
| worker.use_mux16 = use_mux16; |
| worker.cost_dmux = cost_dmux; |
| worker.cost_mux2 = cost_mux2; |
| worker.cost_mux4 = cost_mux4; |
| worker.cost_mux8 = cost_mux8; |
| worker.cost_mux16 = cost_mux16; |
| worker.nodecode = nodecode; |
| worker.nopartial = nopartial; |
| worker.run(); |
| } |
| } |
| } MuxcoverPass; |
| |
| PRIVATE_NAMESPACE_END |