| |
| \section{Yosys by example -- Advanced Synthesis} |
| |
| \begin{frame} |
| \sectionpage |
| \end{frame} |
| |
| \begin{frame}{Overview} |
| This section contains 4 subsections: |
| \begin{itemize} |
| \item Using selections |
| \item Advanced uses of techmap |
| \item Coarse-grain synthesis |
| \item Automatic design changes |
| \end{itemize} |
| \end{frame} |
| |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| |
| \subsection{Using selections} |
| |
| \begin{frame} |
| \subsectionpage |
| \subsectionpagesuffix |
| \end{frame} |
| |
| \subsubsection{Simple selections} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Most Yosys commands make use of the ``selection framework'' of Yosys. It can be used |
| to apply commands only to part of the design. For example: |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| delete # will delete the whole design, but |
| |
| delete foobar # will only delete the module foobar. |
| \end{lstlisting} |
| |
| \bigskip |
| The {\tt select} command can be used to create a selection for subsequent |
| commands. For example: |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select foobar # select the module foobar |
| delete # delete selected objects |
| select -clear # reset selection (select whole design) |
| \end{lstlisting} |
| \end{frame} |
| |
| \subsubsection{Selection by object name} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| The easiest way to select objects is by object name. This is usually only done |
| in synthesis scripts that are hand-tailored for a specific design. |
| |
| \bigskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select foobar # select module foobar |
| select foo* # select all modules whose names start with foo |
| select foo*/bar* # select all objects matching bar* from modules matching foo* |
| select */clk # select objects named clk from all modules |
| \end{lstlisting} |
| \end{frame} |
| |
| \subsubsection{Module and design context} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Commands can be executed in {\it module\/} or {\it design\/} context. Until now all |
| commands have been executed in design context. The {\tt cd} command can be used |
| to switch to module context. |
| |
| \bigskip |
| In module context all commands only effect the active module. Objects in the module |
| are selected without the {\tt <module\_name>/} prefix. For example: |
| |
| \bigskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| cd foo # switch to module foo |
| delete bar # delete object foo/bar |
| |
| cd mycpu # switch to module mycpu |
| dump reg_* # print details on all objects whose names start with reg_ |
| |
| cd .. # switch back to design |
| \end{lstlisting} |
| |
| \bigskip |
| Note: Most synthesis scripts never switch to module context. But it is a very powerful |
| tool for interactive design investigation. |
| \end{frame} |
| |
| \subsubsection{Selecting by object property or type} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Special patterns can be used to select by object property or type. For example: |
| |
| \bigskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select w:reg_* # select all wires whose names start with reg_ |
| select a:foobar # select all objects with the attribute foobar set |
| select a:foobar=42 # select all objects with the attribute foobar set to 42 |
| select A:blabla # select all modules with the attribute blabla set |
| select foo/t:$add # select all $add cells from the module foo |
| \end{lstlisting} |
| |
| \bigskip |
| A complete list of this pattern expressions can be found in the command |
| reference to the {\tt select} command. |
| \end{frame} |
| |
| \subsubsection{Combining selection} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| When more than one selection expression is used in one statement, then they are |
| pushed on a stack. The final elements on the stack are combined into a union: |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1 |
| \end{lstlisting} |
| |
| \bigskip |
| Special \%-commands can be used to combine the elements on the stack: |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1 |
| \end{lstlisting} |
| |
| \medskip |
| \begin{block}{Examples for {\tt \%}-codes (see {\tt help select} for full list)} |
| {\tt \%u} \dotfill union of top two elements on stack -- pop 2, push 1 \\ |
| {\tt \%d} \dotfill difference of top two elements on stack -- pop 2, push 1 \\ |
| {\tt \%i} \dotfill intersection of top two elements on stack -- pop 2, push 1 \\ |
| {\tt \%n} \dotfill inverse of top element on stack -- pop 1, push 1 \\ |
| \end{block} |
| \end{frame} |
| |
| \subsubsection{Expanding selections} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Selections of cells and wires can be expanded along connections using {\tt \%}-codes |
| for selecting input cones ({\tt \%ci}), output cones ({\tt \%co}), or both ({\tt \%x}). |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| # select all wires that are inputs to $add cells |
| select t:$add %ci w:* %i |
| \end{lstlisting} |
| |
| \bigskip |
| Additional constraints such as port names can be specified. |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| # select all wires that connect a "Q" output with a "D" input |
| select c:* %co:+[Q] w:* %i c:* %ci:+[D] w:* %i %i |
| |
| # select the multiplexer tree that drives the signal 'state' |
| select state %ci*:+$mux,$pmux[A,B,Y] |
| \end{lstlisting} |
| |
| \bigskip |
| See {\tt help select} for full documentation of this expressions. |
| \end{frame} |
| |
| \subsubsection{Incremental selection} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Sometimes a selection can most easily be described by a series of add/delete operations. |
| The commands {\tt select -add} and {\tt select -del} respectively add or remove objects |
| from the current selection instead of overwriting it. |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select -none # start with an empty selection |
| select -add reg_* # select a bunch of objects |
| select -del reg_42 # but not this one |
| select -add state %ci # and add mor stuff |
| \end{lstlisting} |
| |
| \bigskip |
| Within a select expression the token {\tt \%} can be used to push the previous selection |
| on the stack. |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select t:$add t:$sub # select all $add and $sub cells |
| select % %ci % %d # select only the input wires to those cells |
| \end{lstlisting} |
| \end{frame} |
| |
| \subsubsection{Creating selection variables} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| Selections can be stored under a name with the {\tt select -set <name>} |
| command. The stored selections can be used in later select expressions |
| using the syntax {\tt @<name>}. |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| select -set cone_a state_a %ci*:-$dff # set @cone_a to the input cone of state_a |
| select -set cone_b state_b %ci*:-$dff # set @cone_b to the input cone of state_b |
| select @cone_a @cone_b %i # select the objects that are in both cones |
| \end{lstlisting} |
| |
| \bigskip |
| Remember that select expressions can also be used directly as arguments to most |
| commands. Some commands also except a single select argument to some options. |
| In those cases selection variables must be used to capture more complex selections. |
| |
| \medskip |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| dump @cone_a @cone_b |
| |
| select -set cone_ab @cone_a @cone_b %i |
| show -color red @cone_ab -color magenta @cone_a -color blue @cone_b |
| \end{lstlisting} |
| \end{frame} |
| |
| \begin{frame}[fragile]{\subsubsecname{} -- Example} |
| \begin{columns} |
| \column[t]{4cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/select.v} |
| \column[t]{7cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExAdv/select.ys} |
| \end{columns} |
| \hfil\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/select.pdf} |
| \end{frame} |
| |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| |
| \subsection{Advanced uses of techmap} |
| |
| \begin{frame} |
| \subsectionpage |
| \subsectionpagesuffix |
| \end{frame} |
| |
| \subsubsection{Introduction to techmap} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item |
| The {\tt techmap} command replaces cells in the design with implementations given |
| as Verilog code (called ``map files''). It can replace Yosys' internal cell |
| types (such as {\tt \$or}) as well as user-defined cell types. |
| \medskip\item |
| Verilog parameters are used extensively to customize the internal cell types. |
| \medskip\item |
| Additional special parameters are used by techmap to communicate meta-data to the |
| map files. |
| \medskip\item |
| Special wires are used to instruct techmap how to handle a module in the map file. |
| \medskip\item |
| Generate blocks and recursion are powerful tools for writing map files. |
| \end{itemize} |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example 1/2} |
| \vskip-0.2cm |
| To map the Verilog OR-reduction operator to 3-input OR gates: |
| \vskip-0.2cm |
| \begin{columns} |
| \column[t]{0.35\linewidth} |
| \lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=24]{PRESENTATION_ExAdv/red_or3x1_map.v} |
| \column[t]{0.65\linewidth} |
| \lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=25]{PRESENTATION_ExAdv/red_or3x1_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example 2/2} |
| \vbox to 0cm{ |
| \hfil\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/red_or3x1.pdf} |
| \vss |
| } |
| \begin{columns} |
| \column[t]{6cm} |
| \column[t]{4cm} |
| \vskip-0.6cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, firstline=4, lastline=4, frame=single]{PRESENTATION_ExAdv/red_or3x1_test.ys} |
| \vskip-0.2cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/red_or3x1_test.v} |
| \end{columns} |
| \end{frame} |
| |
| \subsubsection{Conditional techmap} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item In some cases only cells with certain properties should be substituted. |
| \medskip |
| \item The special wire {\tt \_TECHMAP\_FAIL\_} can be used to disable a module |
| in the map file for a certain set of parameters. |
| \medskip |
| \item The wire {\tt \_TECHMAP\_FAIL\_} must be set to a constant value. If it |
| is non-zero then the module is disabled for this set of parameters. |
| \medskip |
| \item Example use-cases: |
| \begin{itemize} |
| \item coarse-grain cell types that only operate on certain bit widths |
| \item memory resources for different memory geometries (width, depth, ports, etc.) |
| \end{itemize} |
| \end{itemize} |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example} |
| \vbox to 0cm{ |
| \vskip-0.5cm |
| \hfill\includegraphics[width=6cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/sym_mul.pdf} |
| \vss |
| } |
| \vskip-0.5cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/sym_mul_map.v} |
| \begin{columns} |
| \column[t]{6cm} |
| \vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/sym_mul_test.v} |
| \column[t]{4cm} |
| \vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=4]{PRESENTATION_ExAdv/sym_mul_test.ys} |
| \end{columns} |
| \end{frame} |
| |
| \subsubsection{Scripting in map modules} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item The special wires {\tt \_TECHMAP\_DO\_*} can be used to run Yosys scripts |
| in the context of the replacement module. |
| \medskip |
| \item The wire that comes first in alphabetical oder is interpreted as string (must |
| be connected to constants) that is executed as script. Then the wire is removed. Repeat. |
| \medskip |
| \item You can even call techmap recursively! |
| \medskip |
| \item Example use-cases: |
| \begin{itemize} |
| \item Using always blocks in map module: call {\tt proc} |
| \item Perform expensive optimizations (such as {\tt freduce}) on cells where |
| this is known to work well. |
| \item Interacting with custom commands. |
| \end{itemize} |
| \end{itemize} |
| |
| \scriptsize |
| PROTIP: Commands such as {\tt shell}, {\tt show -pause}, and {\tt dump} can be use |
| in the {\tt \_TECHMAP\_DO\_*} scripts for debugging map modules. |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example} |
| \vbox to 0cm{ |
| \vskip4.2cm |
| \hskip0.5cm\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mymul.pdf} |
| \vss |
| } |
| \vskip-0.6cm |
| \begin{columns} |
| \column[t]{6cm} |
| \vskip-0.6cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mymul_map.v} |
| \column[t]{4.2cm} |
| \vskip-0.6cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mymul_test.v} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mymul_test.ys} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, frame=single, language=ys, firstline=7, lastline=12]{PRESENTATION_ExAdv/mymul_test.ys} |
| \end{columns} |
| \end{frame} |
| |
| \subsubsection{Handling constant inputs} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item The special parameters {\tt \_TECHMAP\_CONSTMSK\_\it <port-name>\tt \_} and |
| {\tt \_TECHMAP\_CONSTVAL\_\it <port-name>\tt \_} can be used to handle constant |
| input values to cells. |
| \medskip |
| \item The former contains 1-bits for all constant input bits on the port. |
| \medskip |
| \item The latter contains the constant bits or undef (x) for non-constant bits. |
| \medskip |
| \item Example use-cases: |
| \begin{itemize} |
| \item Converting arithmetic (for example multiply to shift) |
| \item Identify constant addresses or enable bits in memory interfaces. |
| \end{itemize} |
| \end{itemize} |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example} |
| \vbox to 0cm{ |
| \vskip5.2cm |
| \hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mulshift.pdf} |
| \vss |
| } |
| \vskip-0.6cm |
| \begin{columns} |
| \column[t]{6cm} |
| \vskip-0.4cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mulshift_map.v} |
| \column[t]{4.2cm} |
| \vskip-0.6cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mulshift_test.v} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mulshift_test.ys} |
| \end{columns} |
| \end{frame} |
| |
| \subsubsection{Handling shorted inputs} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item The special parameters {\tt \_TECHMAP\_BITS\_CONNMAP\_} and |
| {\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} can be used to handle shorted inputs. |
| \medskip |
| \item Each bit of the port correlates to an {\tt \_TECHMAP\_BITS\_CONNMAP\_} bits wide |
| number in {\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_}. |
| \medskip |
| \item Each unique signal bit is assigned its own number. Identical fields in the {\tt |
| \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} parameters mean shorted signal bits. |
| \medskip |
| \item The numbers 0-3 are reserved for {\tt 0}, {\tt 1}, {\tt x}, and {\tt z} respectively. |
| \medskip |
| \item Example use-cases: |
| \begin{itemize} |
| \item Detecting shared clock or control signals in memory interfaces. |
| \item In some cases this can be used for for optimization. |
| \end{itemize} |
| \end{itemize} |
| \end{frame} |
| |
| \begin{frame}[t]{\subsubsecname{} -- Example} |
| \vbox to 0cm{ |
| \vskip4.5cm |
| \hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/addshift.pdf} |
| \vss |
| } |
| \vskip-0.6cm |
| \begin{columns} |
| \column[t]{6cm} |
| \vskip-0.4cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/addshift_map.v} |
| \column[t]{4.2cm} |
| \vskip-0.6cm |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/addshift_test.v} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/addshift_test.ys} |
| \end{columns} |
| \end{frame} |
| |
| \subsubsection{Notes on using techmap} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item Don't use positional cell parameters in map modules. |
| \medskip |
| \item Don't try to implement basic logic optimization with techmap. \\ |
| {\small (So the OR-reduce using OR3X1 cells map was actually a bad example.)} |
| \medskip |
| \item You can use the {\tt \$\_\,\_}-prefix for internal cell types to avoid |
| collisions with the user-namespace. But always use two underscores or the |
| internal consistency checker will trigger on this cells. |
| \medskip |
| \item Techmap has two major use cases: |
| \begin{itemize} |
| \item Creating good logic-level representation of arithmetic functions. \\ |
| This also means using dedicated hardware resources such as half- and full-adder |
| cells in ASICS or dedicated carry logic in FPGAs. |
| \smallskip |
| \item Mapping of coarse-grain resources such as block memory or DSP cells. |
| \end{itemize} |
| \end{itemize} |
| \end{frame} |
| |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| |
| \subsection{Coarse-grain synthesis} |
| |
| \begin{frame} |
| \subsectionpage |
| \subsectionpagesuffix |
| \end{frame} |
| |
| \subsubsection{Intro to coarse-grain synthesis} |
| |
| \begin{frame}[fragile]{\subsubsecname} |
| In coarse-grain synthesis the target architecture has cells of the same |
| complexity or larger complexity than the internal RTL representation. |
| |
| For example: |
| \begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog] |
| wire [15:0] a, b; |
| wire [31:0] c, y; |
| assign y = a * b + c; |
| \end{lstlisting} |
| |
| This circuit contains two cells in the RTL representation: one multiplier and |
| one adder. In some architectures this circuit can be implemented using |
| a single circuit element, for example an FPGA DSP core. Coarse grain synthesis |
| is this mapping of groups of circuit elements to larger components. |
| |
| \bigskip |
| Fine-grain synthesis would be matching the circuit elements to smaller |
| components, such as LUTs, gates, or half- and full-adders. |
| \end{frame} |
| |
| \subsubsection{The extract pass} |
| |
| \begin{frame}{\subsubsecname} |
| \begin{itemize} |
| \item Like the {\tt techmap} pass, the {\tt extract} pass is called with |
| a map file. It compares the circuits inside the modules of the map file |
| with the design and looks for sub-circuits in the design that match any |
| of the modules in the map file. |
| \bigskip |
| \item If a match is found, the {\tt extract} pass will replace the matching |
| subcircuit with an instance of the module from the map file. |
| \bigskip |
| \item In a way the {\tt extract} pass is the inverse of the techmap pass. |
| \end{itemize} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- Example 1/2} |
| \vbox to 0cm{ |
| \vskip2cm |
| \begin{tikzpicture} |
| \node at (0,0) {\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00a.pdf}}; |
| \node at (3,-3) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00b.pdf}}; |
| \draw[yshift=0.2cm,thick,-latex] (1,-1) -- (2,-2); |
| \end{tikzpicture} |
| \vss} |
| \vskip-1.2cm |
| \begin{columns} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test.v} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/macc_simple_xmap.v} |
| \begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys] |
| read_verilog macc_simple_test.v |
| hierarchy -check -top test |
| |
| extract -map macc_simple_xmap.v;; |
| \end{lstlisting} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[fragile]{\subsubsecname{} -- Example 2/2} |
| \hfil\begin{tabular}{cc} |
| \fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_01.v}}} & |
| \fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_02.v}}} \\ |
| $\downarrow$ & $\downarrow$ \\ |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01a.pdf}} & |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02a.pdf}} \\ |
| $\downarrow$ & $\downarrow$ \\ |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01b.pdf}} & |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02b.pdf}} \\ |
| \end{tabular} |
| \end{frame} |
| |
| \subsubsection{The wrap-extract-unwrap method} |
| |
| \begin{frame}{\subsubsecname} |
| \scriptsize |
| Often a coarse-grain element has a constant bit-width, but can be used to |
| implement operations with a smaller bit-width. For example, a 18x25-bit multiplier |
| can also be used to implement 16x20-bit multiplication. |
| |
| \bigskip |
| A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method: |
| |
| \begin{itemize} |
| \item {\bf wrap} \\ |
| Identify candidate-cells in the circuit and wrap them in a cell with a constant |
| wider bit-width using {\tt techmap}. The wrappers use the same parameters as the original cell, so |
| the information about the original width of the ports is preserved. \\ |
| Then use the {\tt connwrappers} command to connect up the bit-extended in- and |
| outputs of the wrapper cells. |
| \item {\bf extract} \\ |
| Now all operations are encoded using the same bit-width as the coarse grain element. The {\tt |
| extract} command can be used to replace circuits with cells of the target architecture. |
| \item {\bf unwrap} \\ |
| The remaining wrapper cell can be unwrapped using {\tt techmap}. |
| \end{itemize} |
| |
| \bigskip |
| The following sides detail an example that shows how to map MACC operations of |
| arbitrary size to MACC cells with a 18x25-bit multiplier and a 48-bit adder (such as |
| the Xilinx DSP48 cells). |
| \end{frame} |
| |
| \subsubsection{Example: DSP48\_MACC} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 1/13} |
| Preconditioning: {\tt macc\_xilinx\_swap\_map.v} \\ |
| Make sure {\tt A} is the smaller port on all multipliers |
| |
| \begin{columns} |
| \column{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=15]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v} |
| \column{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=16]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 2/13} |
| Wrapping multipliers: {\tt macc\_xilinx\_wrap\_map.v} |
| |
| \begin{columns} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=23]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=24, lastline=46]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 3/13} |
| Wrapping adders: {\tt macc\_xilinx\_wrap\_map.v} |
| |
| \begin{columns} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=48, lastline=67]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=68, lastline=89]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 4/13} |
| Extract: {\tt macc\_xilinx\_xmap.v} |
| |
| \lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_xmap.v} |
| |
| .. simply use the same wrapping commands on this module as on the design to create a template for the {\tt extract} command. |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 5/13} |
| Unwrapping multipliers: {\tt macc\_xilinx\_unwrap\_map.v} |
| |
| \begin{columns} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=18, lastline=30]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 6/13} |
| Unwrapping adders: {\tt macc\_xilinx\_unwrap\_map.v} |
| |
| \begin{columns} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=32, lastline=48]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v} |
| \column[t]{5cm} |
| \lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=49, lastline=61]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v} |
| \end{columns} |
| \end{frame} |
| |
| \begin{frame}[fragile]{\subsubsecname{} -- 7/13} |
| \hfil\begin{tabular}{cc} |
| {\tt test1} & {\tt test2} \\ |
| \fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=1, lastline=6, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} & |
| \fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=8, lastline=13, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} \\ |
| $\downarrow$ & $\downarrow$ \\ |
| \end{tabular} |
| \vskip-0.5cm |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| read_verilog macc_xilinx_test.v |
| hierarchy -check |
| \end{lstlisting} |
| \vskip-0.5cm |
| \hfil\begin{tabular}{cc} |
| $\downarrow$ & $\downarrow$ \\ |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} & |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\ |
| \end{tabular} |
| \end{frame} |
| |
| \begin{frame}[fragile]{\subsubsecname{} -- 8/13} |
| \hfil\begin{tabular}{cc} |
| {\tt test1} & {\tt test2} \\ |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} & |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\ |
| $\downarrow$ & $\downarrow$ \\ |
| \end{tabular} |
| \vskip-0.2cm |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| techmap -map macc_xilinx_swap_map.v ;; |
| \end{lstlisting} |
| \vskip-0.2cm |
| \hfil\begin{tabular}{cc} |
| $\downarrow$ & $\downarrow$ \\ |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}} & |
| \fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}} \\ |
| \end{tabular} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 9/13} |
| Wrapping in {\tt test1}: |
| \begin{columns} |
| \column[t]{5cm} |
| \vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}}\vss} |
| \column[t]{6cm} |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| techmap -map macc_xilinx_wrap_map.v |
| |
| connwrappers -unsigned $__mul_wrapper \ |
| Y Y_WIDTH \ |
| -unsigned $__add_wrapper \ |
| Y Y_WIDTH ;; |
| \end{lstlisting} |
| \end{columns} |
| |
| \vskip1cm |
| \hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 10/13} |
| Wrapping in {\tt test2}: |
| \begin{columns} |
| \column[t]{5cm} |
| \vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}}\vss} |
| \column[t]{6cm} |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| techmap -map macc_xilinx_wrap_map.v |
| |
| connwrappers -unsigned $__mul_wrapper \ |
| Y Y_WIDTH \ |
| -unsigned $__add_wrapper \ |
| Y Y_WIDTH ;; |
| \end{lstlisting} |
| \end{columns} |
| |
| \vskip1cm |
| \hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 11/13} |
| Extract in {\tt test1}: |
| \begin{columns} |
| \column[t]{4.5cm} |
| \vbox to 0cm{ |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| design -push |
| read_verilog macc_xilinx_xmap.v |
| techmap -map macc_xilinx_swap_map.v |
| techmap -map macc_xilinx_wrap_map.v;; |
| design -save __macc_xilinx_xmap |
| design -pop |
| \end{lstlisting} |
| \vss} |
| \column[t]{5.5cm} |
| \vskip-1cm |
| \begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| extract -constports -ignore_parameters \ |
| -map %__macc_xilinx_xmap \ |
| -swap $__add_wrapper A,B ;; |
| \end{lstlisting} |
| \vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf}}\vss} |
| \end{columns} |
| |
| \vskip2cm |
| \hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1d.pdf} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 12/13} |
| Extract in {\tt test2}: |
| \begin{columns} |
| \column[t]{4.5cm} |
| \vbox to 0cm{ |
| \begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| design -push |
| read_verilog macc_xilinx_xmap.v |
| techmap -map macc_xilinx_swap_map.v |
| techmap -map macc_xilinx_wrap_map.v;; |
| design -save __macc_xilinx_xmap |
| design -pop |
| \end{lstlisting} |
| \vss} |
| \column[t]{5.5cm} |
| \vskip-1cm |
| \begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| extract -constports -ignore_parameters \ |
| -map %__macc_xilinx_xmap \ |
| -swap $__add_wrapper A,B ;; |
| \end{lstlisting} |
| \vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf}}\vss} |
| \end{columns} |
| |
| \vskip2cm |
| \hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf} |
| \end{frame} |
| |
| \begin{frame}[t, fragile]{\subsubsecname{} -- 13/13} |
| Unwrap in {\tt test2}: |
| |
| \hfil\begin{tikzpicture} |
| \node at (0,0) {\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf}}; |
| \node at (0,-4) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2e.pdf}}; |
| \node at (1,-1.7) {\begin{lstlisting}[linewidth=5.5cm, frame=single, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys] |
| techmap -map macc_xilinx_unwrap_map.v ;; |
| \end{lstlisting}}; |
| \draw[-latex] (4,-0.7) .. controls (5,-1.7) .. (4,-2.7); |
| \end{tikzpicture} |
| \end{frame} |
| |
| |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| |
| \subsection{Automatic design changes} |
| |
| \begin{frame} |
| \subsectionpage |
| \subsectionpagesuffix |
| \end{frame} |
| |
| \subsubsection{Changing the design from Yosys} |
| |
| \begin{frame}{\subsubsecname} |
| Yosys commands can be used to change the design in memory. Examples of this are: |
| |
| \begin{itemize} |
| \item {\bf Changes in design hierarchy} \\ |
| Commands such as {\tt flatten} and {\tt submod} can be used to change the design hierarchy, i.e. |
| flatten the hierarchy or moving parts of a module to a submodule. This has applications in synthesis |
| scripts as well as in reverse engineering and analysis. |
| |
| \item {\bf Behavioral changes} \\ |
| Commands such as {\tt techmap} can be used to make behavioral changes to the design, for example |
| changing asynchronous resets to synchronous resets. This has applications in design space exploration |
| (evaluation of various architectures for one circuit). |
| \end{itemize} |
| \end{frame} |
| |
| \subsubsection{Example: Async reset to sync reset} |
| |
| \begin{frame}[t, fragile]{\subsubsecname} |
| The following techmap map file replaces all positive-edge async reset flip-flops with |
| positive-edge sync reset flip-flops. The code is taken from the example Yosys script |
| for ASIC synthesis of the Amber ARMv2 CPU. |
| |
| \begin{columns} |
| \column[t]{6cm} |
| \vbox to 0cm{ |
| \begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog] |
| (* techmap_celltype = "$adff" *) |
| module adff2dff (CLK, ARST, D, Q); |
| |
| parameter WIDTH = 1; |
| parameter CLK_POLARITY = 1; |
| parameter ARST_POLARITY = 1; |
| parameter ARST_VALUE = 0; |
| |
| input CLK, ARST; |
| input [WIDTH-1:0] D; |
| output reg [WIDTH-1:0] Q; |
| |
| wire [1023:0] _TECHMAP_DO_ = "proc"; |
| |
| wire _TECHMAP_FAIL_ = !CLK_POLARITY || !ARST_POLARITY; |
| \end{lstlisting} |
| \vss} |
| \column[t]{4cm} |
| \begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog] |
| // ..continued.. |
| |
| |
| always @(posedge CLK) |
| if (ARST) |
| Q <= ARST_VALUE; |
| else |
| <= D; |
| |
| endmodule |
| \end{lstlisting} |
| \end{columns} |
| |
| \end{frame} |
| |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| |
| \subsection{Summary} |
| |
| \begin{frame}{\subsecname} |
| \begin{itemize} |
| \item A lot can be achieved in Yosys just with the standard set of commands. |
| \item The commands {\tt techmap} and {\tt extract} can be used to prototype many complex synthesis tasks. |
| \end{itemize} |
| |
| \bigskip |
| \bigskip |
| \begin{center} |
| Questions? |
| \end{center} |
| |
| \bigskip |
| \bigskip |
| \begin{center} |
| \url{http://www.clifford.at/yosys/} |
| \end{center} |
| \end{frame} |
| |