| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #include "kernel/rtlil.h" |
| #include "kernel/register.h" |
| #include "kernel/sigtools.h" |
| #include "kernel/celltypes.h" |
| #include "kernel/cellaigs.h" |
| #include "kernel/log.h" |
| #include <algorithm> |
| #include <string> |
| #include <regex> |
| #include <vector> |
| #include <cmath> |
| |
| USING_YOSYS_NAMESPACE |
| PRIVATE_NAMESPACE_BEGIN |
| |
| pool<string> used_names; |
| dict<IdString, string> namecache; |
| int autoid_counter; |
| |
| typedef unsigned FDirection; |
| static const FDirection FD_NODIRECTION = 0x0; |
| static const FDirection FD_IN = 0x1; |
| static const FDirection FD_OUT = 0x2; |
| static const FDirection FD_INOUT = 0x3; |
| static const int FIRRTL_MAX_DSH_WIDTH_ERROR = 20; // For historic reasons, this is actually one greater than the maximum allowed shift width |
| |
| // Get a port direction with respect to a specific module. |
| FDirection getPortFDirection(IdString id, Module *module) |
| { |
| Wire *wire = module->wires_.at(id); |
| FDirection direction = FD_NODIRECTION; |
| if (wire && wire->port_id) |
| { |
| if (wire->port_input) |
| direction |= FD_IN; |
| if (wire->port_output) |
| direction |= FD_OUT; |
| } |
| return direction; |
| } |
| |
| string next_id() |
| { |
| string new_id; |
| |
| while (1) { |
| new_id = stringf("_%d", autoid_counter++); |
| if (used_names.count(new_id) == 0) break; |
| } |
| |
| used_names.insert(new_id); |
| return new_id; |
| } |
| |
| const char *make_id(IdString id) |
| { |
| if (namecache.count(id) != 0) |
| return namecache.at(id).c_str(); |
| |
| string new_id = log_id(id); |
| |
| for (int i = 0; i < GetSize(new_id); i++) |
| { |
| char &ch = new_id[i]; |
| if ('a' <= ch && ch <= 'z') continue; |
| if ('A' <= ch && ch <= 'Z') continue; |
| if ('0' <= ch && ch <= '9' && i != 0) continue; |
| if ('_' == ch) continue; |
| ch = '_'; |
| } |
| |
| while (used_names.count(new_id) != 0) |
| new_id += '_'; |
| |
| namecache[id] = new_id; |
| used_names.insert(new_id); |
| return namecache.at(id).c_str(); |
| } |
| |
| struct FirrtlWorker |
| { |
| Module *module; |
| std::ostream &f; |
| |
| dict<SigBit, pair<string, int>> reverse_wire_map; |
| string unconn_id; |
| RTLIL::Design *design; |
| std::string indent; |
| |
| // Define read/write ports and memories. |
| // We'll collect their definitions and emit the corresponding FIRRTL definitions at the appropriate point in module construction. |
| // For the moment, we don't handle $readmemh or $readmemb. |
| // These will be part of a subsequent PR. |
| struct read_port { |
| string name; |
| bool clk_enable; |
| bool clk_parity; |
| bool transparent; |
| RTLIL::SigSpec clk; |
| RTLIL::SigSpec ena; |
| RTLIL::SigSpec addr; |
| read_port(string name, bool clk_enable, bool clk_parity, bool transparent, RTLIL::SigSpec clk, RTLIL::SigSpec ena, RTLIL::SigSpec addr) : name(name), clk_enable(clk_enable), clk_parity(clk_parity), transparent(transparent), clk(clk), ena(ena), addr(addr) { |
| // Current (3/13/2019) conventions: |
| // generate a constant 0 for clock and a constant 1 for enable if they are undefined. |
| if (!clk.is_fully_def()) |
| this->clk = SigSpec(State::S0); |
| if (!ena.is_fully_def()) |
| this->ena = SigSpec(State::S1); |
| } |
| string gen_read(const char * indent) { |
| string addr_expr = make_expr(addr); |
| string ena_expr = make_expr(ena); |
| string clk_expr = make_expr(clk); |
| string addr_str = stringf("%s%s.addr <= %s\n", indent, name.c_str(), addr_expr.c_str()); |
| string ena_str = stringf("%s%s.en <= %s\n", indent, name.c_str(), ena_expr.c_str()); |
| string clk_str = stringf("%s%s.clk <= asClock(%s)\n", indent, name.c_str(), clk_expr.c_str()); |
| return addr_str + ena_str + clk_str; |
| } |
| }; |
| struct write_port : read_port { |
| RTLIL::SigSpec mask; |
| write_port(string name, bool clk_enable, bool clk_parity, bool transparent, RTLIL::SigSpec clk, RTLIL::SigSpec ena, RTLIL::SigSpec addr, RTLIL::SigSpec mask) : read_port(name, clk_enable, clk_parity, transparent, clk, ena, addr), mask(mask) { |
| if (!clk.is_fully_def()) |
| this->clk = SigSpec(RTLIL::Const(0)); |
| if (!ena.is_fully_def()) |
| this->ena = SigSpec(RTLIL::Const(0)); |
| if (!mask.is_fully_def()) |
| this->ena = SigSpec(RTLIL::Const(1)); |
| } |
| string gen_read(const char * /* indent */) { |
| log_error("gen_read called on write_port: %s\n", name.c_str()); |
| return stringf("gen_read called on write_port: %s\n", name.c_str()); |
| } |
| string gen_write(const char * indent) { |
| string addr_expr = make_expr(addr); |
| string ena_expr = make_expr(ena); |
| string clk_expr = make_expr(clk); |
| string mask_expr = make_expr(mask); |
| string mask_str = stringf("%s%s.mask <= %s\n", indent, name.c_str(), mask_expr.c_str()); |
| string addr_str = stringf("%s%s.addr <= %s\n", indent, name.c_str(), addr_expr.c_str()); |
| string ena_str = stringf("%s%s.en <= %s\n", indent, name.c_str(), ena_expr.c_str()); |
| string clk_str = stringf("%s%s.clk <= asClock(%s)\n", indent, name.c_str(), clk_expr.c_str()); |
| return addr_str + ena_str + clk_str + mask_str; |
| } |
| }; |
| /* Memories defined within this module. */ |
| struct memory { |
| Cell *pCell; // for error reporting |
| string name; // memory name |
| int abits; // number of address bits |
| int size; // size (in units) of the memory |
| int width; // size (in bits) of each element |
| int read_latency; |
| int write_latency; |
| vector<read_port> read_ports; |
| vector<write_port> write_ports; |
| std::string init_file; |
| std::string init_file_srcFileSpec; |
| string srcLine; |
| memory(Cell *pCell, string name, int abits, int size, int width) : pCell(pCell), name(name), abits(abits), size(size), width(width), read_latency(0), write_latency(1), init_file(""), init_file_srcFileSpec("") { |
| // Provide defaults for abits or size if one (but not the other) is specified. |
| if (this->abits == 0 && this->size != 0) { |
| this->abits = ceil_log2(this->size); |
| } else if (this->abits != 0 && this->size == 0) { |
| this->size = 1 << this->abits; |
| } |
| // Sanity-check this construction. |
| if (this->name == "") { |
| log_error("Nameless memory%s\n", this->atLine()); |
| } |
| if (this->abits == 0 && this->size == 0) { |
| log_error("Memory %s has zero address bits and size%s\n", this->name.c_str(), this->atLine()); |
| } |
| if (this->width == 0) { |
| log_error("Memory %s has zero width%s\n", this->name.c_str(), this->atLine()); |
| } |
| } |
| // We need a default constructor for the dict insert. |
| memory() : pCell(0), read_latency(0), write_latency(1), init_file(""), init_file_srcFileSpec(""){} |
| |
| const char *atLine() { |
| if (srcLine == "") { |
| if (pCell) { |
| auto p = pCell->attributes.find("\\src"); |
| srcLine = " at " + p->second.decode_string(); |
| } |
| } |
| return srcLine.c_str(); |
| } |
| void add_memory_read_port(read_port &rp) { |
| read_ports.push_back(rp); |
| } |
| void add_memory_write_port(write_port &wp) { |
| write_ports.push_back(wp); |
| } |
| void add_memory_file(std::string init_file, std::string init_file_srcFileSpec) { |
| this->init_file = init_file; |
| this->init_file_srcFileSpec = init_file_srcFileSpec; |
| } |
| |
| }; |
| dict<string, memory> memories; |
| |
| void register_memory(memory &m) |
| { |
| memories[m.name] = m; |
| } |
| |
| void register_reverse_wire_map(string id, SigSpec sig) |
| { |
| for (int i = 0; i < GetSize(sig); i++) |
| reverse_wire_map[sig[i]] = make_pair(id, i); |
| } |
| |
| FirrtlWorker(Module *module, std::ostream &f, RTLIL::Design *theDesign) : module(module), f(f), design(theDesign), indent(" ") |
| { |
| } |
| |
| static string make_expr(const SigSpec &sig) |
| { |
| string expr; |
| |
| for (auto chunk : sig.chunks()) |
| { |
| string new_expr; |
| |
| if (chunk.wire == nullptr) |
| { |
| std::vector<RTLIL::State> bits = chunk.data; |
| new_expr = stringf("UInt<%d>(\"h", GetSize(bits)); |
| |
| while (GetSize(bits) % 4 != 0) |
| bits.push_back(State::S0); |
| |
| for (int i = GetSize(bits)-4; i >= 0; i -= 4) |
| { |
| int val = 0; |
| if (bits[i+0] == State::S1) val += 1; |
| if (bits[i+1] == State::S1) val += 2; |
| if (bits[i+2] == State::S1) val += 4; |
| if (bits[i+3] == State::S1) val += 8; |
| new_expr.push_back(val < 10 ? '0' + val : 'a' + val - 10); |
| } |
| |
| new_expr += "\")"; |
| } |
| else if (chunk.offset == 0 && chunk.width == chunk.wire->width) |
| { |
| new_expr = make_id(chunk.wire->name); |
| } |
| else |
| { |
| string wire_id = make_id(chunk.wire->name); |
| new_expr = stringf("bits(%s, %d, %d)", wire_id.c_str(), chunk.offset + chunk.width - 1, chunk.offset); |
| } |
| |
| if (expr.empty()) |
| expr = new_expr; |
| else |
| expr = "cat(" + new_expr + ", " + expr + ")"; |
| } |
| |
| return expr; |
| } |
| |
| std::string fid(RTLIL::IdString internal_id) |
| { |
| return make_id(internal_id); |
| } |
| |
| std::string cellname(RTLIL::Cell *cell) |
| { |
| return fid(cell->name).c_str(); |
| } |
| |
| void process_instance(RTLIL::Cell *cell, vector<string> &wire_exprs) |
| { |
| std::string cell_type = fid(cell->type); |
| std::string instanceOf; |
| // If this is a parameterized module, its parent module is encoded in the cell type |
| if (cell->type.begins_with("$paramod")) |
| { |
| std::string::iterator it; |
| for (it = cell_type.begin(); it < cell_type.end(); it++) |
| { |
| switch (*it) { |
| case '\\': /* FALL_THROUGH */ |
| case '=': /* FALL_THROUGH */ |
| case '\'': /* FALL_THROUGH */ |
| case '$': instanceOf.append("_"); break; |
| default: instanceOf.append(1, *it); break; |
| } |
| } |
| } |
| else |
| { |
| instanceOf = cell_type; |
| } |
| |
| std::string cell_name = cellname(cell); |
| std::string cell_name_comment; |
| if (cell_name != fid(cell->name)) |
| cell_name_comment = " /* " + fid(cell->name) + " */ "; |
| else |
| cell_name_comment = ""; |
| // Find the module corresponding to this instance. |
| auto instModule = design->module(cell->type); |
| // If there is no instance for this, just return. |
| if (instModule == NULL) |
| { |
| log_warning("No instance for %s.%s\n", cell_type.c_str(), cell_name.c_str()); |
| return; |
| } |
| wire_exprs.push_back(stringf("%s" "inst %s%s of %s", indent.c_str(), cell_name.c_str(), cell_name_comment.c_str(), instanceOf.c_str())); |
| |
| for (auto it = cell->connections().begin(); it != cell->connections().end(); ++it) { |
| if (it->second.size() > 0) { |
| const SigSpec &secondSig = it->second; |
| const std::string firstName = cell_name + "." + make_id(it->first); |
| const std::string secondExpr = make_expr(secondSig); |
| // Find the direction for this port. |
| FDirection dir = getPortFDirection(it->first, instModule); |
| std::string sourceExpr, sinkExpr; |
| const SigSpec *sinkSig = nullptr; |
| switch (dir) { |
| case FD_INOUT: |
| log_warning("Instance port connection %s.%s is INOUT; treating as OUT\n", cell_type.c_str(), log_signal(it->second)); |
| /* FALLTHRU */ |
| case FD_OUT: |
| sourceExpr = firstName; |
| sinkExpr = secondExpr; |
| sinkSig = &secondSig; |
| break; |
| case FD_NODIRECTION: |
| log_warning("Instance port connection %s.%s is NODIRECTION; treating as IN\n", cell_type.c_str(), log_signal(it->second)); |
| /* FALLTHRU */ |
| case FD_IN: |
| sourceExpr = secondExpr; |
| sinkExpr = firstName; |
| break; |
| default: |
| log_error("Instance port %s.%s unrecognized connection direction 0x%x !\n", cell_type.c_str(), log_signal(it->second), dir); |
| break; |
| } |
| // Check for subfield assignment. |
| std::string bitsString = "bits("; |
| if (sinkExpr.compare(0, bitsString.length(), bitsString) == 0) { |
| if (sinkSig == nullptr) |
| log_error("Unknown subfield %s.%s\n", cell_type.c_str(), sinkExpr.c_str()); |
| // Don't generate the assignment here. |
| // Add the source and sink to the "reverse_wire_map" and we'll output the assignment |
| // as part of the coalesced subfield assignments for this wire. |
| register_reverse_wire_map(sourceExpr, *sinkSig); |
| } else { |
| wire_exprs.push_back(stringf("\n%s%s <= %s", indent.c_str(), sinkExpr.c_str(), sourceExpr.c_str())); |
| } |
| } |
| } |
| wire_exprs.push_back(stringf("\n")); |
| |
| } |
| |
| // Given an expression for a shift amount, and a maximum width, |
| // generate the FIRRTL expression for equivalent dynamic shift taking into account FIRRTL shift semantics. |
| std::string gen_dshl(const string b_expr, const int b_width) |
| { |
| string result = b_expr; |
| if (b_width >= FIRRTL_MAX_DSH_WIDTH_ERROR) { |
| int max_shift_width_bits = FIRRTL_MAX_DSH_WIDTH_ERROR - 1; |
| string max_shift_string = stringf("UInt<%d>(%d)", max_shift_width_bits, (1<<max_shift_width_bits) - 1); |
| // Deal with the difference in semantics between FIRRTL and verilog |
| result = stringf("mux(gt(%s, %s), %s, bits(%s, %d, 0))", b_expr.c_str(), max_shift_string.c_str(), max_shift_string.c_str(), b_expr.c_str(), max_shift_width_bits - 1); |
| } |
| return result; |
| } |
| |
| void run() |
| { |
| f << stringf(" module %s:\n", make_id(module->name)); |
| vector<string> port_decls, wire_decls, cell_exprs, wire_exprs; |
| |
| for (auto wire : module->wires()) |
| { |
| const auto wireName = make_id(wire->name); |
| // If a wire has initial data, issue a warning since FIRRTL doesn't currently support it. |
| if (wire->attributes.count("\\init")) { |
| log_warning("Initial value (%s) for (%s.%s) not supported\n", |
| wire->attributes.at("\\init").as_string().c_str(), |
| log_id(module), log_id(wire)); |
| } |
| if (wire->port_id) |
| { |
| if (wire->port_input && wire->port_output) |
| log_error("Module port %s.%s is inout!\n", log_id(module), log_id(wire)); |
| port_decls.push_back(stringf(" %s %s: UInt<%d>\n", wire->port_input ? "input" : "output", |
| wireName, wire->width)); |
| } |
| else |
| { |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", wireName, wire->width)); |
| } |
| } |
| |
| for (auto cell : module->cells()) |
| { |
| static Const ndef(0, 0); |
| |
| // Is this cell is a module instance? |
| if (cell->type[0] != '$') |
| { |
| process_instance(cell, wire_exprs); |
| continue; |
| } |
| // Not a module instance. Set up cell properties |
| bool extract_y_bits = false; // Assume no extraction of final bits will be required. |
| int a_width = cell->parameters.at("\\A_WIDTH", ndef).as_int(); // The width of "A" |
| int b_width = cell->parameters.at("\\B_WIDTH", ndef).as_int(); // The width of "A" |
| const int y_width = cell->parameters.at("\\Y_WIDTH", ndef).as_int(); // The width of the result |
| const bool a_signed = cell->parameters.at("\\A_SIGNED", ndef).as_bool(); |
| const bool b_signed = cell->parameters.at("\\B_SIGNED", ndef).as_bool(); |
| bool firrtl_is_signed = a_signed; // The result is signed (subsequent code may change this). |
| int firrtl_width = 0; |
| string primop; |
| bool always_uint = false; |
| string y_id = make_id(cell->name); |
| |
| if (cell->type.in("$not", "$logic_not", "$neg", "$reduce_and", "$reduce_or", "$reduce_xor", "$reduce_bool", "$reduce_xnor")) |
| { |
| string a_expr = make_expr(cell->getPort("\\A")); |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| |
| if (a_signed) { |
| a_expr = "asSInt(" + a_expr + ")"; |
| } |
| |
| // Don't use the results of logical operations (a single bit) to control padding |
| if (!(cell->type.in("$eq", "$eqx", "$gt", "$ge", "$lt", "$le", "$ne", "$nex", "$reduce_bool", "$logic_not") && y_width == 1) ) { |
| a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); |
| } |
| |
| // Assume the FIRRTL width is a single bit. |
| firrtl_width = 1; |
| if (cell->type == "$not") primop = "not"; |
| else if (cell->type == "$neg") { |
| primop = "neg"; |
| firrtl_is_signed = true; // Result of "neg" is signed (an SInt). |
| firrtl_width = a_width; |
| } else if (cell->type == "$logic_not") { |
| primop = "eq"; |
| a_expr = stringf("%s, UInt(0)", a_expr.c_str()); |
| } |
| else if (cell->type == "$reduce_and") primop = "andr"; |
| else if (cell->type == "$reduce_or") primop = "orr"; |
| else if (cell->type == "$reduce_xor") primop = "xorr"; |
| else if (cell->type == "$reduce_xnor") { |
| primop = "not"; |
| a_expr = stringf("xorr(%s)", a_expr.c_str()); |
| } |
| else if (cell->type == "$reduce_bool") { |
| primop = "neq"; |
| // Use the sign of the a_expr and its width as the type (UInt/SInt) and width of the comparand. |
| a_expr = stringf("%s, %cInt<%d>(0)", a_expr.c_str(), a_signed ? 'S' : 'U', a_width); |
| } |
| |
| string expr = stringf("%s(%s)", primop.c_str(), a_expr.c_str()); |
| |
| if ((firrtl_is_signed && !always_uint)) |
| expr = stringf("asUInt(%s)", expr.c_str()); |
| |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| |
| continue; |
| } |
| if (cell->type.in("$add", "$sub", "$mul", "$div", "$mod", "$xor", "$xnor", "$and", "$or", "$eq", "$eqx", |
| "$gt", "$ge", "$lt", "$le", "$ne", "$nex", "$shr", "$sshr", "$sshl", "$shl", |
| "$logic_and", "$logic_or", "$pow")) |
| { |
| string a_expr = make_expr(cell->getPort("\\A")); |
| string b_expr = make_expr(cell->getPort("\\B")); |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| |
| if (a_signed) { |
| a_expr = "asSInt(" + a_expr + ")"; |
| // Expand the "A" operand to the result width |
| if (a_width < y_width) { |
| a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); |
| a_width = y_width; |
| } |
| } |
| // Shift amount is always unsigned, and needn't be padded to result width, |
| // otherwise, we need to cast the b_expr appropriately |
| if (b_signed && !cell->type.in("$shr", "$sshr", "$shl", "$sshl", "$pow")) { |
| b_expr = "asSInt(" + b_expr + ")"; |
| // Expand the "B" operand to the result width |
| if (b_width < y_width) { |
| b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width); |
| b_width = y_width; |
| } |
| } |
| |
| // For the arithmetic ops, expand operand widths to result widths befor performing the operation. |
| // This corresponds (according to iverilog) to what verilog compilers implement. |
| if (cell->type.in("$add", "$sub", "$mul", "$div", "$mod", "$xor", "$xnor", "$and", "$or")) |
| { |
| if (a_width < y_width) { |
| a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); |
| a_width = y_width; |
| } |
| if (b_width < y_width) { |
| b_expr = stringf("pad(%s, %d)", b_expr.c_str(), y_width); |
| b_width = y_width; |
| } |
| } |
| // Assume the FIRRTL width is the width of "A" |
| firrtl_width = a_width; |
| auto a_sig = cell->getPort("\\A"); |
| |
| if (cell->type == "$add") { |
| primop = "add"; |
| firrtl_is_signed = a_signed | b_signed; |
| firrtl_width = max(a_width, b_width); |
| } else if (cell->type == "$sub") { |
| primop = "sub"; |
| firrtl_is_signed = true; |
| int a_widthInc = (!a_signed && b_signed) ? 2 : (a_signed && !b_signed) ? 1 : 0; |
| int b_widthInc = (a_signed && !b_signed) ? 2 : (!a_signed && b_signed) ? 1 : 0; |
| firrtl_width = max(a_width + a_widthInc, b_width + b_widthInc); |
| } else if (cell->type == "$mul") { |
| primop = "mul"; |
| firrtl_is_signed = a_signed | b_signed; |
| firrtl_width = a_width + b_width; |
| } else if (cell->type == "$div") { |
| primop = "div"; |
| firrtl_is_signed = a_signed | b_signed; |
| firrtl_width = a_width; |
| } else if (cell->type == "$mod") { |
| primop = "rem"; |
| firrtl_width = min(a_width, b_width); |
| } else if (cell->type == "$and") { |
| primop = "and"; |
| always_uint = true; |
| firrtl_width = max(a_width, b_width); |
| } |
| else if (cell->type == "$or" ) { |
| primop = "or"; |
| always_uint = true; |
| firrtl_width = max(a_width, b_width); |
| } |
| else if (cell->type == "$xor") { |
| primop = "xor"; |
| always_uint = true; |
| firrtl_width = max(a_width, b_width); |
| } |
| else if (cell->type == "$xnor") { |
| primop = "xnor"; |
| always_uint = true; |
| firrtl_width = max(a_width, b_width); |
| } |
| else if ((cell->type == "$eq") | (cell->type == "$eqx")) { |
| primop = "eq"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if ((cell->type == "$ne") | (cell->type == "$nex")) { |
| primop = "neq"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if (cell->type == "$gt") { |
| primop = "gt"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if (cell->type == "$ge") { |
| primop = "geq"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if (cell->type == "$lt") { |
| primop = "lt"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if (cell->type == "$le") { |
| primop = "leq"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if ((cell->type == "$shl") | (cell->type == "$sshl")) { |
| // FIRRTL will widen the result (y) by the amount of the shift. |
| // We'll need to offset this by extracting the un-widened portion as Verilog would do. |
| extract_y_bits = true; |
| // Is the shift amount constant? |
| auto b_sig = cell->getPort("\\B"); |
| if (b_sig.is_fully_const()) { |
| primop = "shl"; |
| int shift_amount = b_sig.as_int(); |
| b_expr = std::to_string(shift_amount); |
| firrtl_width = a_width + shift_amount; |
| } else { |
| primop = "dshl"; |
| // Convert from FIRRTL left shift semantics. |
| b_expr = gen_dshl(b_expr, b_width); |
| firrtl_width = a_width + (1 << b_width) - 1; |
| } |
| } |
| else if ((cell->type == "$shr") | (cell->type == "$sshr")) { |
| // We don't need to extract a specific range of bits. |
| extract_y_bits = false; |
| // Is the shift amount constant? |
| auto b_sig = cell->getPort("\\B"); |
| if (b_sig.is_fully_const()) { |
| primop = "shr"; |
| int shift_amount = b_sig.as_int(); |
| b_expr = std::to_string(shift_amount); |
| firrtl_width = max(1, a_width - shift_amount); |
| } else { |
| primop = "dshr"; |
| firrtl_width = a_width; |
| } |
| // We'll need to do some special fixups if the source (and thus result) is signed. |
| if (firrtl_is_signed) { |
| // If this is a "logical" shift right, pretend the source is unsigned. |
| if (cell->type == "$shr") { |
| a_expr = "asUInt(" + a_expr + ")"; |
| } |
| } |
| } |
| else if ((cell->type == "$logic_and")) { |
| primop = "and"; |
| a_expr = "neq(" + a_expr + ", UInt(0))"; |
| b_expr = "neq(" + b_expr + ", UInt(0))"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if ((cell->type == "$logic_or")) { |
| primop = "or"; |
| a_expr = "neq(" + a_expr + ", UInt(0))"; |
| b_expr = "neq(" + b_expr + ", UInt(0))"; |
| always_uint = true; |
| firrtl_width = 1; |
| } |
| else if ((cell->type == "$pow")) { |
| if (a_sig.is_fully_const() && a_sig.as_int() == 2) { |
| // We'll convert this to a shift. To simplify things, change the a_expr to "1" |
| // so we can use b_expr directly as a shift amount. |
| // Only support 2 ** N (i.e., shift left) |
| // FIRRTL will widen the result (y) by the amount of the shift. |
| // We'll need to offset this by extracting the un-widened portion as Verilog would do. |
| a_expr = firrtl_is_signed ? "SInt(1)" : "UInt(1)"; |
| extract_y_bits = true; |
| // Is the shift amount constant? |
| auto b_sig = cell->getPort("\\B"); |
| if (b_sig.is_fully_const()) { |
| primop = "shl"; |
| int shiftAmount = b_sig.as_int(); |
| if (shiftAmount < 0) { |
| log_error("Negative power exponent - %d: %s.%s\n", shiftAmount, log_id(module), log_id(cell)); |
| } |
| b_expr = std::to_string(shiftAmount); |
| firrtl_width = a_width + shiftAmount; |
| } else { |
| primop = "dshl"; |
| // Convert from FIRRTL left shift semantics. |
| b_expr = gen_dshl(b_expr, b_width); |
| firrtl_width = a_width + (1 << b_width) - 1; |
| } |
| } else { |
| log_error("Non power 2: %s.%s\n", log_id(module), log_id(cell)); |
| } |
| } |
| |
| if (!cell->parameters.at("\\B_SIGNED").as_bool()) { |
| b_expr = "asUInt(" + b_expr + ")"; |
| } |
| |
| string expr; |
| // Deal with $xnor == ~^ (not xor) |
| if (primop == "xnor") { |
| expr = stringf("not(xor(%s, %s))", a_expr.c_str(), b_expr.c_str()); |
| } else { |
| expr = stringf("%s(%s, %s)", primop.c_str(), a_expr.c_str(), b_expr.c_str()); |
| } |
| |
| // Deal with FIRRTL's "shift widens" semantics, or the need to widen the FIRRTL result. |
| // If the operation is signed, the FIRRTL width will be 1 one bit larger. |
| if (extract_y_bits) { |
| expr = stringf("bits(%s, %d, 0)", expr.c_str(), y_width - 1); |
| } else if (firrtl_is_signed && (firrtl_width + 1) < y_width) { |
| expr = stringf("pad(%s, %d)", expr.c_str(), y_width); |
| } |
| |
| if ((firrtl_is_signed && !always_uint)) |
| expr = stringf("asUInt(%s)", expr.c_str()); |
| |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| |
| continue; |
| } |
| |
| if (cell->type.in("$mux")) |
| { |
| int width = cell->parameters.at("\\WIDTH").as_int(); |
| string a_expr = make_expr(cell->getPort("\\A")); |
| string b_expr = make_expr(cell->getPort("\\B")); |
| string s_expr = make_expr(cell->getPort("\\S")); |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), width)); |
| |
| string expr = stringf("mux(%s, %s, %s)", s_expr.c_str(), b_expr.c_str(), a_expr.c_str()); |
| |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| |
| continue; |
| } |
| |
| if (cell->type.in("$mem")) |
| { |
| string mem_id = make_id(cell->name); |
| int abits = cell->parameters.at("\\ABITS").as_int(); |
| int width = cell->parameters.at("\\WIDTH").as_int(); |
| int size = cell->parameters.at("\\SIZE").as_int(); |
| memory m(cell, mem_id, abits, size, width); |
| int rd_ports = cell->parameters.at("\\RD_PORTS").as_int(); |
| int wr_ports = cell->parameters.at("\\WR_PORTS").as_int(); |
| |
| Const initdata = cell->parameters.at("\\INIT"); |
| for (State bit : initdata.bits) |
| if (bit != State::Sx) |
| log_error("Memory with initialization data: %s.%s\n", log_id(module), log_id(cell)); |
| |
| Const rd_clk_enable = cell->parameters.at("\\RD_CLK_ENABLE"); |
| Const wr_clk_enable = cell->parameters.at("\\WR_CLK_ENABLE"); |
| Const wr_clk_polarity = cell->parameters.at("\\WR_CLK_POLARITY"); |
| |
| int offset = cell->parameters.at("\\OFFSET").as_int(); |
| if (offset != 0) |
| log_error("Memory with nonzero offset: %s.%s\n", log_id(module), log_id(cell)); |
| |
| for (int i = 0; i < rd_ports; i++) |
| { |
| if (rd_clk_enable[i] != State::S0) |
| log_error("Clocked read port %d on memory %s.%s.\n", i, log_id(module), log_id(cell)); |
| |
| SigSpec addr_sig = cell->getPort("\\RD_ADDR").extract(i*abits, abits); |
| SigSpec data_sig = cell->getPort("\\RD_DATA").extract(i*width, width); |
| string addr_expr = make_expr(addr_sig); |
| string name(stringf("%s.r%d", m.name.c_str(), i)); |
| bool clk_enable = false; |
| bool clk_parity = true; |
| bool transparency = false; |
| SigSpec ena_sig = RTLIL::SigSpec(RTLIL::State::S1, 1); |
| SigSpec clk_sig = RTLIL::SigSpec(RTLIL::State::S0, 1); |
| read_port rp(name, clk_enable, clk_parity, transparency, clk_sig, ena_sig, addr_sig); |
| m.add_memory_read_port(rp); |
| cell_exprs.push_back(rp.gen_read(indent.c_str())); |
| register_reverse_wire_map(stringf("%s.data", name.c_str()), data_sig); |
| } |
| |
| for (int i = 0; i < wr_ports; i++) |
| { |
| if (wr_clk_enable[i] != State::S1) |
| log_error("Unclocked write port %d on memory %s.%s.\n", i, log_id(module), log_id(cell)); |
| |
| if (wr_clk_polarity[i] != State::S1) |
| log_error("Negedge write port %d on memory %s.%s.\n", i, log_id(module), log_id(cell)); |
| |
| string name(stringf("%s.w%d", m.name.c_str(), i)); |
| bool clk_enable = true; |
| bool clk_parity = true; |
| bool transparency = false; |
| SigSpec addr_sig =cell->getPort("\\WR_ADDR").extract(i*abits, abits); |
| string addr_expr = make_expr(addr_sig); |
| SigSpec data_sig =cell->getPort("\\WR_DATA").extract(i*width, width); |
| string data_expr = make_expr(data_sig); |
| SigSpec clk_sig = cell->getPort("\\WR_CLK").extract(i); |
| string clk_expr = make_expr(clk_sig); |
| |
| SigSpec wen_sig = cell->getPort("\\WR_EN").extract(i*width, width); |
| string wen_expr = make_expr(wen_sig[0]); |
| |
| for (int i = 1; i < GetSize(wen_sig); i++) |
| if (wen_sig[0] != wen_sig[i]) |
| log_error("Complex write enable on port %d on memory %s.%s.\n", i, log_id(module), log_id(cell)); |
| |
| SigSpec mask_sig = RTLIL::SigSpec(RTLIL::State::S1, 1); |
| write_port wp(name, clk_enable, clk_parity, transparency, clk_sig, wen_sig[0], addr_sig, mask_sig); |
| m.add_memory_write_port(wp); |
| cell_exprs.push_back(stringf("%s%s.data <= %s\n", indent.c_str(), name.c_str(), data_expr.c_str())); |
| cell_exprs.push_back(wp.gen_write(indent.c_str())); |
| } |
| register_memory(m); |
| continue; |
| } |
| |
| if (cell->type.in("$memwr", "$memrd", "$meminit")) |
| { |
| std::string cell_type = fid(cell->type); |
| std::string mem_id = make_id(cell->parameters["\\MEMID"].decode_string()); |
| int abits = cell->parameters.at("\\ABITS").as_int(); |
| int width = cell->parameters.at("\\WIDTH").as_int(); |
| memory *mp = nullptr; |
| if (cell->type == "$meminit" ) { |
| log_error("$meminit (%s.%s.%s) currently unsupported\n", log_id(module), log_id(cell), mem_id.c_str()); |
| } else { |
| // It's a $memwr or $memrd. Remember the read/write port parameters for the eventual FIRRTL memory definition. |
| auto addrSig = cell->getPort("\\ADDR"); |
| auto dataSig = cell->getPort("\\DATA"); |
| auto enableSig = cell->getPort("\\EN"); |
| auto clockSig = cell->getPort("\\CLK"); |
| Const clk_enable = cell->parameters.at("\\CLK_ENABLE"); |
| Const clk_polarity = cell->parameters.at("\\CLK_POLARITY"); |
| |
| // Do we already have an entry for this memory? |
| if (memories.count(mem_id) == 0) { |
| memory m(cell, mem_id, abits, 0, width); |
| register_memory(m); |
| } |
| mp = &memories.at(mem_id); |
| int portNum = 0; |
| bool transparency = false; |
| string data_expr = make_expr(dataSig); |
| if (cell->type.in("$memwr")) { |
| portNum = (int) mp->write_ports.size(); |
| write_port wp(stringf("%s.w%d", mem_id.c_str(), portNum), clk_enable.as_bool(), clk_polarity.as_bool(), transparency, clockSig, enableSig, addrSig, dataSig); |
| mp->add_memory_write_port(wp); |
| cell_exprs.push_back(stringf("%s%s.data <= %s\n", indent.c_str(), wp.name.c_str(), data_expr.c_str())); |
| cell_exprs.push_back(wp.gen_write(indent.c_str())); |
| } else if (cell->type.in("$memrd")) { |
| portNum = (int) mp->read_ports.size(); |
| read_port rp(stringf("%s.r%d", mem_id.c_str(), portNum), clk_enable.as_bool(), clk_polarity.as_bool(), transparency, clockSig, enableSig, addrSig); |
| mp->add_memory_read_port(rp); |
| cell_exprs.push_back(rp.gen_read(indent.c_str())); |
| register_reverse_wire_map(stringf("%s.data", rp.name.c_str()), dataSig); |
| } |
| } |
| continue; |
| } |
| |
| if (cell->type.in("$dff")) |
| { |
| bool clkpol = cell->parameters.at("\\CLK_POLARITY").as_bool(); |
| if (clkpol == false) |
| log_error("Negative edge clock on FF %s.%s.\n", log_id(module), log_id(cell)); |
| |
| int width = cell->parameters.at("\\WIDTH").as_int(); |
| string expr = make_expr(cell->getPort("\\D")); |
| string clk_expr = "asClock(" + make_expr(cell->getPort("\\CLK")) + ")"; |
| |
| wire_decls.push_back(stringf(" reg %s: UInt<%d>, %s\n", y_id.c_str(), width, clk_expr.c_str())); |
| |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Q")); |
| |
| continue; |
| } |
| |
| // This may be a parameterized module - paramod. |
| if (cell->type.begins_with("$paramod")) |
| { |
| process_instance(cell, wire_exprs); |
| continue; |
| } |
| if (cell->type == "$shiftx") { |
| // assign y = a[b +: y_width]; |
| // We'll extract the correct bits as part of the primop. |
| |
| string a_expr = make_expr(cell->getPort("\\A")); |
| // Get the initial bit selector |
| string b_expr = make_expr(cell->getPort("\\B")); |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| |
| if (cell->getParam("\\B_SIGNED").as_bool()) { |
| // Use validif to constrain the selection (test the sign bit) |
| auto b_string = b_expr.c_str(); |
| int b_sign = cell->parameters.at("\\B_WIDTH").as_int() - 1; |
| b_expr = stringf("validif(not(bits(%s, %d, %d)), %s)", b_string, b_sign, b_sign, b_string); |
| } |
| string expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_expr.c_str()); |
| |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| continue; |
| } |
| if (cell->type == "$shift") { |
| // assign y = a >> b; |
| // where b may be negative |
| |
| string a_expr = make_expr(cell->getPort("\\A")); |
| string b_expr = make_expr(cell->getPort("\\B")); |
| auto b_string = b_expr.c_str(); |
| string expr; |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| |
| if (cell->getParam("\\B_SIGNED").as_bool()) { |
| // We generate a left or right shift based on the sign of b. |
| std::string dshl = stringf("bits(dshl(%s, %s), 0, %d)", a_expr.c_str(), gen_dshl(b_expr, b_width).c_str(), y_width); |
| std::string dshr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string); |
| expr = stringf("mux(%s < 0, %s, %s)", |
| b_string, |
| dshl.c_str(), |
| dshr.c_str() |
| ); |
| } else { |
| expr = stringf("dshr(%s, %s)", a_expr.c_str(), b_string); |
| } |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| continue; |
| } |
| if (cell->type == "$pos") { |
| // assign y = a; |
| // printCell(cell); |
| string a_expr = make_expr(cell->getPort("\\A")); |
| // Verilog appears to treat the result as signed, so if the result is wider than "A", |
| // we need to pad. |
| if (a_width < y_width) { |
| a_expr = stringf("pad(%s, %d)", a_expr.c_str(), y_width); |
| } |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), a_expr.c_str())); |
| register_reverse_wire_map(y_id, cell->getPort("\\Y")); |
| continue; |
| } |
| log_error("Cell type not supported: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); |
| } |
| |
| for (auto conn : module->connections()) |
| { |
| string y_id = next_id(); |
| int y_width = GetSize(conn.first); |
| string expr = make_expr(conn.second); |
| |
| wire_decls.push_back(stringf(" wire %s: UInt<%d>\n", y_id.c_str(), y_width)); |
| cell_exprs.push_back(stringf(" %s <= %s\n", y_id.c_str(), expr.c_str())); |
| register_reverse_wire_map(y_id, conn.first); |
| } |
| |
| for (auto wire : module->wires()) |
| { |
| string expr; |
| |
| if (wire->port_input) |
| continue; |
| |
| int cursor = 0; |
| bool is_valid = false; |
| bool make_unconn_id = false; |
| |
| while (cursor < wire->width) |
| { |
| int chunk_width = 1; |
| string new_expr; |
| |
| SigBit start_bit(wire, cursor); |
| |
| if (reverse_wire_map.count(start_bit)) |
| { |
| pair<string, int> start_map = reverse_wire_map.at(start_bit); |
| |
| while (cursor+chunk_width < wire->width) |
| { |
| SigBit stop_bit(wire, cursor+chunk_width); |
| |
| if (reverse_wire_map.count(stop_bit) == 0) |
| break; |
| |
| pair<string, int> stop_map = reverse_wire_map.at(stop_bit); |
| stop_map.second -= chunk_width; |
| |
| if (start_map != stop_map) |
| break; |
| |
| chunk_width++; |
| } |
| |
| new_expr = stringf("bits(%s, %d, %d)", start_map.first.c_str(), |
| start_map.second + chunk_width - 1, start_map.second); |
| is_valid = true; |
| } |
| else |
| { |
| if (unconn_id.empty()) { |
| unconn_id = next_id(); |
| make_unconn_id = true; |
| } |
| new_expr = unconn_id; |
| } |
| |
| if (expr.empty()) |
| expr = new_expr; |
| else |
| expr = "cat(" + new_expr + ", " + expr + ")"; |
| |
| cursor += chunk_width; |
| } |
| |
| if (is_valid) { |
| if (make_unconn_id) { |
| wire_decls.push_back(stringf(" wire %s: UInt<1>\n", unconn_id.c_str())); |
| wire_decls.push_back(stringf(" %s is invalid\n", unconn_id.c_str())); |
| } |
| wire_exprs.push_back(stringf(" %s <= %s\n", make_id(wire->name), expr.c_str())); |
| } else { |
| if (make_unconn_id) { |
| unconn_id.clear(); |
| } |
| wire_decls.push_back(stringf(" %s is invalid\n", make_id(wire->name))); |
| } |
| } |
| |
| for (auto str : port_decls) |
| f << str; |
| |
| f << stringf("\n"); |
| |
| for (auto str : wire_decls) |
| f << str; |
| |
| f << stringf("\n"); |
| |
| // If we have any memory definitions, output them. |
| for (auto kv : memories) { |
| memory &m = kv.second; |
| f << stringf(" mem %s:\n", m.name.c_str()); |
| f << stringf(" data-type => UInt<%d>\n", m.width); |
| f << stringf(" depth => %d\n", m.size); |
| for (int i = 0; i < (int) m.read_ports.size(); i += 1) { |
| f << stringf(" reader => r%d\n", i); |
| } |
| for (int i = 0; i < (int) m.write_ports.size(); i += 1) { |
| f << stringf(" writer => w%d\n", i); |
| } |
| f << stringf(" read-latency => %d\n", m.read_latency); |
| f << stringf(" write-latency => %d\n", m.write_latency); |
| f << stringf(" read-under-write => undefined\n"); |
| } |
| f << stringf("\n"); |
| |
| for (auto str : cell_exprs) |
| f << str; |
| |
| f << stringf("\n"); |
| |
| for (auto str : wire_exprs) |
| f << str; |
| } |
| }; |
| |
| struct FirrtlBackend : public Backend { |
| FirrtlBackend() : Backend("firrtl", "write design to a FIRRTL file") { } |
| void help() YS_OVERRIDE |
| { |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| log("\n"); |
| log(" write_firrtl [options] [filename]\n"); |
| log("\n"); |
| log("Write a FIRRTL netlist of the current design.\n"); |
| log("The following commands are executed by this command:\n"); |
| log(" pmuxtree\n"); |
| log("\n"); |
| } |
| void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE |
| { |
| size_t argidx = args.size(); // We aren't expecting any arguments. |
| |
| // If we weren't explicitly passed a filename, use the last argument (if it isn't a flag). |
| if (filename == "") { |
| if (argidx > 0 && args[argidx - 1][0] != '-') { |
| // extra_args and friends need to see this argument. |
| argidx -= 1; |
| filename = args[argidx]; |
| } |
| } |
| extra_args(f, filename, args, argidx); |
| |
| if (!design->full_selection()) |
| log_cmd_error("This command only operates on fully selected designs!\n"); |
| |
| log_header(design, "Executing FIRRTL backend.\n"); |
| log_push(); |
| |
| Pass::call(design, stringf("pmuxtree")); |
| |
| namecache.clear(); |
| autoid_counter = 0; |
| |
| // Get the top module, or a reasonable facsimile - we need something for the circuit name. |
| Module *top = design->top_module(); |
| Module *last = nullptr; |
| // Generate module and wire names. |
| for (auto module : design->modules()) { |
| make_id(module->name); |
| last = module; |
| if (top == nullptr && module->get_bool_attribute("\\top")) { |
| top = module; |
| } |
| for (auto wire : module->wires()) |
| if (wire->port_id) |
| make_id(wire->name); |
| } |
| |
| if (top == nullptr) |
| top = last; |
| |
| *f << stringf("circuit %s:\n", make_id(top->name)); |
| |
| for (auto module : design->modules()) |
| { |
| FirrtlWorker worker(module, *f, design); |
| worker.run(); |
| } |
| |
| namecache.clear(); |
| autoid_counter = 0; |
| } |
| } FirrtlBackend; |
| |
| PRIVATE_NAMESPACE_END |