| /* -*- c++ -*- |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| */ |
| |
| #ifndef SATGEN_H |
| #define SATGEN_H |
| |
| #include "kernel/rtlil.h" |
| #include "kernel/sigtools.h" |
| #include "kernel/celltypes.h" |
| #include "kernel/macc.h" |
| |
| #include "libs/ezsat/ezminisat.h" |
| |
| YOSYS_NAMESPACE_BEGIN |
| |
| // defined in kernel/register.cc |
| extern struct SatSolver *yosys_satsolver_list; |
| extern struct SatSolver *yosys_satsolver; |
| |
| struct SatSolver |
| { |
| string name; |
| SatSolver *next; |
| virtual ezSAT *create() = 0; |
| |
| SatSolver(string name) : name(name) { |
| next = yosys_satsolver_list; |
| yosys_satsolver_list = this; |
| } |
| |
| virtual ~SatSolver() { |
| auto p = &yosys_satsolver_list; |
| while (*p) { |
| if (*p == this) |
| *p = next; |
| else |
| p = &(*p)->next; |
| } |
| if (yosys_satsolver == this) |
| yosys_satsolver = yosys_satsolver_list; |
| } |
| }; |
| |
| struct ezSatPtr : public std::unique_ptr<ezSAT> { |
| ezSatPtr() : unique_ptr<ezSAT>(yosys_satsolver->create()) { } |
| }; |
| |
| struct SatGen |
| { |
| ezSAT *ez; |
| SigMap *sigmap; |
| std::string prefix; |
| SigPool initial_state; |
| std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en; |
| std::map<std::string, RTLIL::SigSpec> assumes_a, assumes_en; |
| std::map<std::string, std::map<RTLIL::SigBit, int>> imported_signals; |
| std::map<std::pair<std::string, int>, bool> initstates; |
| bool ignore_div_by_zero; |
| bool model_undef; |
| |
| SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) : |
| ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false) |
| { |
| } |
| |
| void setContext(SigMap *sigmap, std::string prefix = std::string()) |
| { |
| this->sigmap = sigmap; |
| this->prefix = prefix; |
| } |
| |
| std::vector<int> importSigSpecWorker(RTLIL::SigSpec sig, std::string &pf, bool undef_mode, bool dup_undef) |
| { |
| log_assert(!undef_mode || model_undef); |
| sigmap->apply(sig); |
| |
| std::vector<int> vec; |
| vec.reserve(GetSize(sig)); |
| |
| for (auto &bit : sig) |
| if (bit.wire == NULL) { |
| if (model_undef && dup_undef && bit == RTLIL::State::Sx) |
| vec.push_back(ez->frozen_literal()); |
| else |
| vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->CONST_TRUE : ez->CONST_FALSE); |
| } else { |
| std::string name = pf + (bit.wire->width == 1 ? stringf("%s", log_id(bit.wire)) : stringf("%s [%d]", log_id(bit.wire->name), bit.offset)); |
| vec.push_back(ez->frozen_literal(name)); |
| imported_signals[pf][bit] = vec.back(); |
| } |
| return vec; |
| } |
| |
| std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(sig, pf, false, false); |
| } |
| |
| std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(sig, pf, false, true); |
| } |
| |
| std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(sig, pf, true, false); |
| } |
| |
| int importSigBit(RTLIL::SigBit bit, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(bit, pf, false, false).front(); |
| } |
| |
| int importDefSigBit(RTLIL::SigBit bit, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(bit, pf, false, true).front(); |
| } |
| |
| int importUndefSigBit(RTLIL::SigBit bit, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return importSigSpecWorker(bit, pf, true, false).front(); |
| } |
| |
| bool importedSigBit(RTLIL::SigBit bit, int timestep = -1) |
| { |
| log_assert(timestep != 0); |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| return imported_signals[pf].count(bit) != 0; |
| } |
| |
| void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1) |
| { |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| sig_a = asserts_a[pf]; |
| sig_en = asserts_en[pf]; |
| } |
| |
| void getAssumes(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1) |
| { |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| sig_a = assumes_a[pf]; |
| sig_en = assumes_en[pf]; |
| } |
| |
| int importAsserts(int timestep = -1) |
| { |
| std::vector<int> check_bits, enable_bits; |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| if (model_undef) { |
| check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep)); |
| enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep)); |
| } else { |
| check_bits = importDefSigSpec(asserts_a[pf], timestep); |
| enable_bits = importDefSigSpec(asserts_en[pf], timestep); |
| } |
| return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits))); |
| } |
| |
| int importAssumes(int timestep = -1) |
| { |
| std::vector<int> check_bits, enable_bits; |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| if (model_undef) { |
| check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_a[pf], timestep)), importDefSigSpec(assumes_a[pf], timestep)); |
| enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(assumes_en[pf], timestep)), importDefSigSpec(assumes_en[pf], timestep)); |
| } else { |
| check_bits = importDefSigSpec(assumes_a[pf], timestep); |
| enable_bits = importDefSigSpec(assumes_en[pf], timestep); |
| } |
| return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits))); |
| } |
| |
| int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1) |
| { |
| if (timestep_rhs < 0) |
| timestep_rhs = timestep_lhs; |
| |
| log_assert(lhs.size() == rhs.size()); |
| |
| std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs); |
| std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs); |
| |
| if (!model_undef) |
| return ez->vec_eq(vec_lhs, vec_rhs); |
| |
| std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs); |
| std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs); |
| |
| std::vector<int> eq_bits; |
| for (int i = 0; i < lhs.size(); i++) |
| eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)), |
| ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i))))); |
| return ez->expression(ezSAT::OpAnd, eq_bits); |
| } |
| |
| void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false) |
| { |
| bool is_signed = forced_signed; |
| if (!forced_signed && cell->parameters.count(ID(A_SIGNED)) > 0 && cell->parameters.count(ID(B_SIGNED)) > 0) |
| is_signed = cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool(); |
| while (vec_a.size() < vec_b.size() || vec_a.size() < y_width) |
| vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE); |
| while (vec_b.size() < vec_a.size() || vec_b.size() < y_width) |
| vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->CONST_FALSE); |
| } |
| |
| void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false) |
| { |
| extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed); |
| while (vec_y.size() < vec_a.size()) |
| vec_y.push_back(ez->literal()); |
| } |
| |
| void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false) |
| { |
| bool is_signed = forced_signed || (cell->parameters.count(ID(A_SIGNED)) > 0 && cell->parameters[ID(A_SIGNED)].as_bool()); |
| while (vec_a.size() < vec_y.size()) |
| vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->CONST_FALSE); |
| while (vec_y.size() < vec_a.size()) |
| vec_y.push_back(ez->literal()); |
| } |
| |
| void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef) |
| { |
| log_assert(model_undef); |
| log_assert(vec_y.size() == vec_yy.size()); |
| if (vec_y.size() > vec_undef.size()) { |
| std::vector<int> trunc_y(vec_y.begin(), vec_y.begin() + vec_undef.size()); |
| std::vector<int> trunc_yy(vec_yy.begin(), vec_yy.begin() + vec_undef.size()); |
| ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(trunc_y, trunc_yy)))); |
| } else { |
| log_assert(vec_y.size() == vec_undef.size()); |
| ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy)))); |
| } |
| } |
| |
| void undefGating(int y, int yy, int undef) |
| { |
| ez->assume(ez->OR(undef, ez->IFF(y, yy))); |
| } |
| |
| void setInitState(int timestep) |
| { |
| auto key = make_pair(prefix, timestep); |
| log_assert(initstates.count(key) == 0 || initstates.at(key) == true); |
| initstates[key] = true; |
| } |
| |
| bool importCell(RTLIL::Cell *cell, int timestep = -1) |
| { |
| bool arith_undef_handled = false; |
| bool is_arith_compare = cell->type.in(ID($lt), ID($le), ID($ge), ID($gt)); |
| |
| if (model_undef && (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod)) || is_arith_compare)) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| if (is_arith_compare) |
| extendSignalWidth(undef_a, undef_b, cell, true); |
| else |
| extendSignalWidth(undef_a, undef_b, undef_y, cell, true); |
| |
| int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); |
| int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); |
| int undef_y_bit = ez->OR(undef_any_a, undef_any_b); |
| |
| if (cell->type.in(ID($div), ID($mod))) { |
| std::vector<int> b = importSigSpec(cell->getPort(ID::B), timestep); |
| undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b))); |
| } |
| |
| if (is_arith_compare) { |
| for (size_t i = 1; i < undef_y.size(); i++) |
| ez->SET(ez->CONST_FALSE, undef_y.at(i)); |
| ez->SET(undef_y_bit, undef_y.at(0)); |
| } else { |
| std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit); |
| ez->assume(ez->vec_eq(undef_y_bits, undef_y)); |
| } |
| |
| arith_undef_handled = true; |
| } |
| |
| if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_), |
| ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($sub))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(a, b, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| if (cell->type.in(ID($and), ID($_AND_))) |
| ez->assume(ez->vec_eq(ez->vec_and(a, b), yy)); |
| if (cell->type == ID($_NAND_)) |
| ez->assume(ez->vec_eq(ez->vec_not(ez->vec_and(a, b)), yy)); |
| if (cell->type.in(ID($or), ID($_OR_))) |
| ez->assume(ez->vec_eq(ez->vec_or(a, b), yy)); |
| if (cell->type == ID($_NOR_)) |
| ez->assume(ez->vec_eq(ez->vec_not(ez->vec_or(a, b)), yy)); |
| if (cell->type.in(ID($xor), ID($_XOR_))) |
| ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy)); |
| if (cell->type.in(ID($xnor), ID($_XNOR_))) |
| ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy)); |
| if (cell->type == ID($_ANDNOT_)) |
| ez->assume(ez->vec_eq(ez->vec_and(a, ez->vec_not(b)), yy)); |
| if (cell->type == ID($_ORNOT_)) |
| ez->assume(ez->vec_eq(ez->vec_or(a, ez->vec_not(b)), yy)); |
| if (cell->type == ID($add)) |
| ez->assume(ez->vec_eq(ez->vec_add(a, b), yy)); |
| if (cell->type == ID($sub)) |
| ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy)); |
| |
| if (model_undef && !arith_undef_handled) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(undef_a, undef_b, undef_y, cell, false); |
| |
| if (cell->type.in(ID($and), ID($_AND_), ID($_NAND_))) { |
| std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); |
| std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); |
| std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0))); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| } |
| else if (cell->type.in(ID($or), ID($_OR_), ID($_NOR_))) { |
| std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a)); |
| std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b)); |
| std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1))); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| } |
| else if (cell->type.in(ID($xor), ID($xnor), ID($_XOR_), ID($_XNOR_))) { |
| std::vector<int> yX = ez->vec_or(undef_a, undef_b); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| } |
| else if (cell->type == ID($_ANDNOT_)) { |
| std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); |
| std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b)); |
| std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b1))); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| } |
| |
| else if (cell->type == ID($_ORNOT_)) { |
| std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a)); |
| std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); |
| std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b0))); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| } |
| else |
| log_abort(); |
| |
| undefGating(y, yy, undef_y); |
| } |
| else if (model_undef) |
| { |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($_AOI3_), ID($_OAI3_), ID($_AOI4_), ID($_OAI4_))) |
| { |
| bool aoi_mode = cell->type.in(ID($_AOI3_), ID($_AOI4_)); |
| bool three_mode = cell->type.in(ID($_AOI3_), ID($_OAI3_)); |
| |
| int a = importDefSigSpec(cell->getPort(ID::A), timestep).at(0); |
| int b = importDefSigSpec(cell->getPort(ID::B), timestep).at(0); |
| int c = importDefSigSpec(cell->getPort(ID(C)), timestep).at(0); |
| int d = three_mode ? (aoi_mode ? ez->CONST_TRUE : ez->CONST_FALSE) : importDefSigSpec(cell->getPort(ID(D)), timestep).at(0); |
| int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0); |
| int yy = model_undef ? ez->literal() : y; |
| |
| if (cell->type.in(ID($_AOI3_), ID($_AOI4_))) |
| ez->assume(ez->IFF(ez->NOT(ez->OR(ez->AND(a, b), ez->AND(c, d))), yy)); |
| else |
| ez->assume(ez->IFF(ez->NOT(ez->AND(ez->OR(a, b), ez->OR(c, d))), yy)); |
| |
| if (model_undef) |
| { |
| int undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep).at(0); |
| int undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep).at(0); |
| int undef_c = importUndefSigSpec(cell->getPort(ID(C)), timestep).at(0); |
| int undef_d = three_mode ? ez->CONST_FALSE : importUndefSigSpec(cell->getPort(ID(D)), timestep).at(0); |
| int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0); |
| |
| if (aoi_mode) |
| { |
| int a0 = ez->AND(ez->NOT(a), ez->NOT(undef_a)); |
| int b0 = ez->AND(ez->NOT(b), ez->NOT(undef_b)); |
| int c0 = ez->AND(ez->NOT(c), ez->NOT(undef_c)); |
| int d0 = ez->AND(ez->NOT(d), ez->NOT(undef_d)); |
| |
| int ab = ez->AND(a, b), cd = ez->AND(c, d); |
| int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a0, b0))); |
| int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c0, d0))); |
| |
| int ab1 = ez->AND(ab, ez->NOT(undef_ab)); |
| int cd1 = ez->AND(cd, ez->NOT(undef_cd)); |
| int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab1, cd1))); |
| |
| ez->assume(ez->IFF(yX, undef_y)); |
| } |
| else |
| { |
| int a1 = ez->AND(a, ez->NOT(undef_a)); |
| int b1 = ez->AND(b, ez->NOT(undef_b)); |
| int c1 = ez->AND(c, ez->NOT(undef_c)); |
| int d1 = ez->AND(d, ez->NOT(undef_d)); |
| |
| int ab = ez->OR(a, b), cd = ez->OR(c, d); |
| int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a1, b1))); |
| int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c1, d1))); |
| |
| int ab0 = ez->AND(ez->NOT(ab), ez->NOT(undef_ab)); |
| int cd0 = ez->AND(ez->NOT(cd), ez->NOT(undef_cd)); |
| int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab0, cd0))); |
| |
| ez->assume(ez->IFF(yX, undef_y)); |
| } |
| |
| undefGating(y, yy, undef_y); |
| } |
| |
| return true; |
| } |
| |
| if (cell->type.in(ID($_NOT_), ID($not))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(a, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| ez->assume(ez->vec_eq(ez->vec_not(a), yy)); |
| |
| if (model_undef) { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(undef_a, undef_y, cell, false); |
| ez->assume(ez->vec_eq(undef_a, undef_y)); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($_MUX_), ID($mux), ID($_NMUX_))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> s = importDefSigSpec(cell->getPort(ID(S)), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| if (cell->type == ID($_NMUX_)) |
| ez->assume(ez->vec_eq(ez->vec_not(ez->vec_ite(s.at(0), b, a)), yy)); |
| else |
| ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID(S)), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b)); |
| std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b)); |
| std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a)); |
| ez->assume(ez->vec_eq(yX, undef_y)); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($pmux)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> s = importDefSigSpec(cell->getPort(ID(S)), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| std::vector<int> tmp = a; |
| for (size_t i = 0; i < s.size(); i++) { |
| std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); |
| tmp = ez->vec_ite(s.at(i), part_of_b, tmp); |
| } |
| ez->assume(ez->vec_eq(tmp, yy)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID(S)), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| int maybe_a = ez->CONST_TRUE; |
| |
| std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->CONST_FALSE); |
| std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->CONST_FALSE); |
| |
| for (size_t i = 0; i < s.size(); i++) |
| { |
| std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); |
| std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size()); |
| |
| int maybe_s = ez->OR(s.at(i), undef_s.at(i)); |
| int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i))); |
| |
| maybe_a = ez->AND(maybe_a, ez->NOT(sure_s)); |
| |
| bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b)), bits_set); |
| bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b)), bits_clr); |
| } |
| |
| bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set); |
| bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr); |
| |
| ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y)); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($pos), ID($neg))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(a, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| if (cell->type == ID($pos)) { |
| ez->assume(ez->vec_eq(a, yy)); |
| } else { |
| std::vector<int> zero(a.size(), ez->CONST_FALSE); |
| ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy)); |
| } |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(undef_a, undef_y, cell); |
| |
| if (cell->type == ID($pos)) { |
| ez->assume(ez->vec_eq(undef_a, undef_y)); |
| } else { |
| int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); |
| std::vector<int> undef_y_bits(undef_y.size(), undef_any_a); |
| ez->assume(ez->vec_eq(undef_y_bits, undef_y)); |
| } |
| |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($logic_not))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| if (cell->type == ID($reduce_and)) |
| ez->SET(ez->expression(ez->OpAnd, a), yy.at(0)); |
| if (cell->type.in(ID($reduce_or), ID($reduce_bool))) |
| ez->SET(ez->expression(ez->OpOr, a), yy.at(0)); |
| if (cell->type == ID($reduce_xor)) |
| ez->SET(ez->expression(ez->OpXor, a), yy.at(0)); |
| if (cell->type == ID($reduce_xnor)) |
| ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0)); |
| if (cell->type == ID($logic_not)) |
| ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0)); |
| for (size_t i = 1; i < y.size(); i++) |
| ez->SET(ez->CONST_FALSE, yy.at(i)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| int aX = ez->expression(ezSAT::OpOr, undef_a); |
| |
| if (cell->type == ID($reduce_and)) { |
| int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a))); |
| ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0))); |
| } |
| else if (cell->type.in(ID($reduce_or), ID($reduce_bool), ID($logic_not))) { |
| int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a))); |
| ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0))); |
| } |
| else if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) { |
| ez->assume(ez->IFF(aX, undef_y.at(0))); |
| } else |
| log_abort(); |
| |
| for (size_t i = 1; i < undef_y.size(); i++) |
| ez->SET(ez->CONST_FALSE, undef_y.at(i)); |
| |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($logic_and), ID($logic_or))) |
| { |
| std::vector<int> vec_a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> vec_b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| |
| int a = ez->expression(ez->OpOr, vec_a); |
| int b = ez->expression(ez->OpOr, vec_b); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| if (cell->type == ID($logic_and)) |
| ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0)); |
| else |
| ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0)); |
| for (size_t i = 1; i < y.size(); i++) |
| ez->SET(ez->CONST_FALSE, yy.at(i)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a))); |
| int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b))); |
| int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a))); |
| int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b))); |
| int aX = ez->expression(ezSAT::OpOr, undef_a); |
| int bX = ez->expression(ezSAT::OpOr, undef_b); |
| |
| if (cell->type == ID($logic_and)) |
| ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0)); |
| else if (cell->type == ID($logic_or)) |
| ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0)); |
| else |
| log_abort(); |
| |
| for (size_t i = 1; i < undef_y.size(); i++) |
| ez->SET(ez->CONST_FALSE, undef_y.at(i)); |
| |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt))) |
| { |
| bool is_signed = cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool(); |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(a, b, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| if (model_undef && cell->type.in(ID($eqx), ID($nex))) { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| extendSignalWidth(undef_a, undef_b, cell, true); |
| a = ez->vec_or(a, undef_a); |
| b = ez->vec_or(b, undef_b); |
| } |
| |
| if (cell->type == ID($lt)) |
| ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0)); |
| if (cell->type == ID($le)) |
| ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0)); |
| if (cell->type.in(ID($eq), ID($eqx))) |
| ez->SET(ez->vec_eq(a, b), yy.at(0)); |
| if (cell->type.in(ID($ne), ID($nex))) |
| ez->SET(ez->vec_ne(a, b), yy.at(0)); |
| if (cell->type == ID($ge)) |
| ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0)); |
| if (cell->type == ID($gt)) |
| ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0)); |
| for (size_t i = 1; i < y.size(); i++) |
| ez->SET(ez->CONST_FALSE, yy.at(i)); |
| |
| if (model_undef && cell->type.in(ID($eqx), ID($nex))) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(undef_a, undef_b, cell, true); |
| |
| if (cell->type == ID($eqx)) |
| yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b)); |
| else |
| yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b)); |
| |
| for (size_t i = 0; i < y.size(); i++) |
| ez->SET(ez->CONST_FALSE, undef_y.at(i)); |
| |
| ez->assume(ez->vec_eq(y, yy)); |
| } |
| else if (model_undef && cell->type.in(ID($eq), ID($ne))) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(undef_a, undef_b, cell, true); |
| |
| int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); |
| int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); |
| int undef_any = ez->OR(undef_any_a, undef_any_b); |
| |
| std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b)); |
| std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b)); |
| |
| int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits); |
| int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne)); |
| |
| for (size_t i = 1; i < undef_y.size(); i++) |
| ez->SET(ez->CONST_FALSE, undef_y.at(i)); |
| ez->SET(undef_y_bit, undef_y.at(0)); |
| |
| undefGating(y, yy, undef_y); |
| } |
| else |
| { |
| if (model_undef) { |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| undefGating(y, yy, undef_y); |
| } |
| log_assert(!model_undef || arith_undef_handled); |
| } |
| return true; |
| } |
| |
| if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| int extend_bit = ez->CONST_FALSE; |
| |
| if (!cell->type.in(ID($shift), ID($shiftx)) && cell->parameters[ID(A_SIGNED)].as_bool()) |
| extend_bit = a.back(); |
| |
| while (y.size() < a.size()) |
| y.push_back(ez->literal()); |
| while (y.size() > a.size()) |
| a.push_back(extend_bit); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| std::vector<int> shifted_a; |
| |
| if (cell->type.in( ID($shl), ID($sshl))) |
| shifted_a = ez->vec_shift_left(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($shr)) |
| shifted_a = ez->vec_shift_right(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($sshr)) |
| shifted_a = ez->vec_shift_right(a, b, false, cell->parameters[ID(A_SIGNED)].as_bool() ? a.back() : ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type.in(ID($shift), ID($shiftx))) |
| shifted_a = ez->vec_shift_right(a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| ez->assume(ez->vec_eq(shifted_a, yy)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| std::vector<int> undef_a_shifted; |
| |
| extend_bit = cell->type == ID($shiftx) ? ez->CONST_TRUE : ez->CONST_FALSE; |
| if (!cell->type.in(ID($shift), ID($shiftx)) && cell->parameters[ID(A_SIGNED)].as_bool()) |
| extend_bit = undef_a.back(); |
| |
| while (undef_y.size() < undef_a.size()) |
| undef_y.push_back(ez->literal()); |
| while (undef_y.size() > undef_a.size()) |
| undef_a.push_back(extend_bit); |
| |
| if (cell->type.in(ID($shl), ID($sshl))) |
| undef_a_shifted = ez->vec_shift_left(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($shr)) |
| undef_a_shifted = ez->vec_shift_right(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($sshr)) |
| undef_a_shifted = ez->vec_shift_right(undef_a, b, false, cell->parameters[ID(A_SIGNED)].as_bool() ? undef_a.back() : ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($shift)) |
| undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); |
| |
| if (cell->type == ID($shiftx)) |
| undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID(B_SIGNED)].as_bool(), ez->CONST_TRUE, ez->CONST_TRUE); |
| |
| int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); |
| std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b); |
| ez->assume(ez->vec_eq(ez->vec_or(undef_a_shifted, undef_all_y_bits), undef_y)); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($mul)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(a, b, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| std::vector<int> tmp(a.size(), ez->CONST_FALSE); |
| for (int i = 0; i < int(a.size()); i++) |
| { |
| std::vector<int> shifted_a(a.size(), ez->CONST_FALSE); |
| for (int j = i; j < int(a.size()); j++) |
| shifted_a.at(j) = a.at(j-i); |
| tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp); |
| } |
| ez->assume(ez->vec_eq(tmp, yy)); |
| |
| if (model_undef) { |
| log_assert(arith_undef_handled); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($macc)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| Macc macc; |
| macc.from_cell(cell); |
| |
| std::vector<int> tmp(GetSize(y), ez->CONST_FALSE); |
| |
| for (auto &port : macc.ports) |
| { |
| std::vector<int> in_a = importDefSigSpec(port.in_a, timestep); |
| std::vector<int> in_b = importDefSigSpec(port.in_b, timestep); |
| |
| while (GetSize(in_a) < GetSize(y)) |
| in_a.push_back(port.is_signed && !in_a.empty() ? in_a.back() : ez->CONST_FALSE); |
| in_a.resize(GetSize(y)); |
| |
| if (GetSize(in_b)) |
| { |
| while (GetSize(in_b) < GetSize(y)) |
| in_b.push_back(port.is_signed && !in_b.empty() ? in_b.back() : ez->CONST_FALSE); |
| in_b.resize(GetSize(y)); |
| |
| for (int i = 0; i < GetSize(in_b); i++) { |
| std::vector<int> shifted_a(in_a.size(), ez->CONST_FALSE); |
| for (int j = i; j < int(in_a.size()); j++) |
| shifted_a.at(j) = in_a.at(j-i); |
| if (port.do_subtract) |
| tmp = ez->vec_ite(in_b.at(i), ez->vec_sub(tmp, shifted_a), tmp); |
| else |
| tmp = ez->vec_ite(in_b.at(i), ez->vec_add(tmp, shifted_a), tmp); |
| } |
| } |
| else |
| { |
| if (port.do_subtract) |
| tmp = ez->vec_sub(tmp, in_a); |
| else |
| tmp = ez->vec_add(tmp, in_a); |
| } |
| } |
| |
| for (int i = 0; i < GetSize(b); i++) { |
| std::vector<int> val(GetSize(y), ez->CONST_FALSE); |
| val.at(0) = b.at(i); |
| tmp = ez->vec_add(tmp, val); |
| } |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| |
| int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); |
| int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); |
| |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| ez->assume(ez->vec_eq(undef_y, std::vector<int>(GetSize(y), ez->OR(undef_any_a, undef_any_b)))); |
| |
| undefGating(y, tmp, undef_y); |
| } |
| else |
| ez->assume(ez->vec_eq(y, tmp)); |
| |
| return true; |
| } |
| |
| if (cell->type.in(ID($div), ID($mod))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidth(a, b, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| |
| std::vector<int> a_u, b_u; |
| if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) { |
| a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a); |
| b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b); |
| } else { |
| a_u = a; |
| b_u = b; |
| } |
| |
| std::vector<int> chain_buf = a_u; |
| std::vector<int> y_u(a_u.size(), ez->CONST_FALSE); |
| for (int i = int(a.size())-1; i >= 0; i--) |
| { |
| chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->CONST_FALSE); |
| |
| std::vector<int> b_shl(i, ez->CONST_FALSE); |
| b_shl.insert(b_shl.end(), b_u.begin(), b_u.end()); |
| b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->CONST_FALSE); |
| |
| y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl); |
| chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf); |
| |
| chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end()); |
| } |
| |
| std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size()); |
| if (cell->type == ID($div)) { |
| if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) |
| ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u))); |
| else |
| ez->assume(ez->vec_eq(y_tmp, y_u)); |
| } else { |
| if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) |
| ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf))); |
| else |
| ez->assume(ez->vec_eq(y_tmp, chain_buf)); |
| } |
| |
| if (ignore_div_by_zero) { |
| ez->assume(ez->expression(ezSAT::OpOr, b)); |
| } else { |
| std::vector<int> div_zero_result; |
| if (cell->type == ID($div)) { |
| if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) { |
| std::vector<int> all_ones(y.size(), ez->CONST_TRUE); |
| std::vector<int> only_first_one(y.size(), ez->CONST_FALSE); |
| only_first_one.at(0) = ez->CONST_TRUE; |
| div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones); |
| } else { |
| div_zero_result.insert(div_zero_result.end(), cell->getPort(ID::A).size(), ez->CONST_TRUE); |
| div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); |
| } |
| } else { |
| int copy_a_bits = min(cell->getPort(ID::A).size(), cell->getPort(ID::B).size()); |
| div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits); |
| if (cell->parameters[ID(A_SIGNED)].as_bool() && cell->parameters[ID(B_SIGNED)].as_bool()) |
| div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back()); |
| else |
| div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); |
| } |
| ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result))); |
| } |
| |
| if (model_undef) { |
| log_assert(arith_undef_handled); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($lut)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> lut; |
| for (auto bit : cell->getParam(ID(LUT)).bits) |
| lut.push_back(bit == State::S1 ? ez->CONST_TRUE : ez->CONST_FALSE); |
| while (GetSize(lut) < (1 << GetSize(a))) |
| lut.push_back(ez->CONST_FALSE); |
| lut.resize(1 << GetSize(a)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> t(lut), u(GetSize(t), ez->CONST_FALSE); |
| |
| for (int i = GetSize(a)-1; i >= 0; i--) |
| { |
| std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); |
| std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); |
| |
| std::vector<int> u0(u.begin(), u.begin() + GetSize(u)/2); |
| std::vector<int> u1(u.begin() + GetSize(u)/2, u.end()); |
| |
| t = ez->vec_ite(a[i], t1, t0); |
| u = ez->vec_ite(undef_a[i], ez->vec_or(ez->vec_xor(t0, t1), ez->vec_or(u0, u1)), ez->vec_ite(a[i], u1, u0)); |
| } |
| |
| log_assert(GetSize(t) == 1); |
| log_assert(GetSize(u) == 1); |
| undefGating(y, t, u); |
| ez->assume(ez->vec_eq(importUndefSigSpec(cell->getPort(ID::Y), timestep), u)); |
| } |
| else |
| { |
| std::vector<int> t = lut; |
| for (int i = GetSize(a)-1; i >= 0; i--) |
| { |
| std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); |
| std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); |
| t = ez->vec_ite(a[i], t1, t0); |
| } |
| |
| log_assert(GetSize(t) == 1); |
| ez->assume(ez->vec_eq(y, t)); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($sop)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0); |
| |
| int width = cell->getParam(ID(WIDTH)).as_int(); |
| int depth = cell->getParam(ID(DEPTH)).as_int(); |
| |
| vector<State> table_raw = cell->getParam(ID(TABLE)).bits; |
| while (GetSize(table_raw) < 2*width*depth) |
| table_raw.push_back(State::S0); |
| |
| vector<vector<int>> table(depth); |
| |
| for (int i = 0; i < depth; i++) |
| for (int j = 0; j < width; j++) |
| { |
| bool pat0 = (table_raw[2*width*i + 2*j + 0] == State::S1); |
| bool pat1 = (table_raw[2*width*i + 2*j + 1] == State::S1); |
| |
| if (pat0 && !pat1) |
| table.at(i).push_back(0); |
| else if (!pat0 && pat1) |
| table.at(i).push_back(1); |
| else |
| table.at(i).push_back(-1); |
| } |
| |
| if (model_undef) |
| { |
| std::vector<int> products, undef_products; |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0); |
| |
| for (int i = 0; i < depth; i++) |
| { |
| std::vector<int> cmp_a, cmp_ua, cmp_b; |
| |
| for (int j = 0; j < width; j++) |
| if (table.at(i).at(j) >= 0) { |
| cmp_a.push_back(a.at(j)); |
| cmp_ua.push_back(undef_a.at(j)); |
| cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); |
| } |
| |
| std::vector<int> masked_a = ez->vec_or(cmp_a, cmp_ua); |
| std::vector<int> masked_b = ez->vec_or(cmp_b, cmp_ua); |
| |
| int masked_eq = ez->vec_eq(masked_a, masked_b); |
| int any_undef = ez->expression(ezSAT::OpOr, cmp_ua); |
| |
| undef_products.push_back(ez->AND(any_undef, masked_eq)); |
| products.push_back(ez->AND(ez->NOT(any_undef), masked_eq)); |
| } |
| |
| int yy = ez->expression(ezSAT::OpOr, products); |
| ez->SET(undef_y, ez->AND(ez->NOT(yy), ez->expression(ezSAT::OpOr, undef_products))); |
| undefGating(y, yy, undef_y); |
| } |
| else |
| { |
| std::vector<int> products; |
| |
| for (int i = 0; i < depth; i++) |
| { |
| std::vector<int> cmp_a, cmp_b; |
| |
| for (int j = 0; j < width; j++) |
| if (table.at(i).at(j) >= 0) { |
| cmp_a.push_back(a.at(j)); |
| cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); |
| } |
| |
| products.push_back(ez->vec_eq(cmp_a, cmp_b)); |
| } |
| |
| ez->SET(y, ez->expression(ezSAT::OpOr, products)); |
| } |
| |
| return true; |
| } |
| |
| if (cell->type == ID($fa)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> c = importDefSigSpec(cell->getPort(ID(C)), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| std::vector<int> x = importDefSigSpec(cell->getPort(ID(X)), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| std::vector<int> xx = model_undef ? ez->vec_var(x.size()) : x; |
| |
| std::vector<int> t1 = ez->vec_xor(a, b); |
| ez->assume(ez->vec_eq(yy, ez->vec_xor(t1, c))); |
| |
| std::vector<int> t2 = ez->vec_and(a, b); |
| std::vector<int> t3 = ez->vec_and(c, t1); |
| ez->assume(ez->vec_eq(xx, ez->vec_or(t2, t3))); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_c = importUndefSigSpec(cell->getPort(ID(C)), timestep); |
| |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID(X)), timestep); |
| |
| ez->assume(ez->vec_eq(undef_y, ez->vec_or(ez->vec_or(undef_a, undef_b), undef_c))); |
| ez->assume(ez->vec_eq(undef_x, undef_y)); |
| |
| undefGating(y, yy, undef_y); |
| undefGating(x, xx, undef_x); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($lcu)) |
| { |
| std::vector<int> p = importDefSigSpec(cell->getPort(ID(P)), timestep); |
| std::vector<int> g = importDefSigSpec(cell->getPort(ID(G)), timestep); |
| std::vector<int> ci = importDefSigSpec(cell->getPort(ID(CI)), timestep); |
| std::vector<int> co = importDefSigSpec(cell->getPort(ID(CO)), timestep); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(co.size()) : co; |
| |
| for (int i = 0; i < GetSize(co); i++) |
| ez->SET(yy[i], ez->OR(g[i], ez->AND(p[i], i ? yy[i-1] : ci[0]))); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_p = importUndefSigSpec(cell->getPort(ID(P)), timestep); |
| std::vector<int> undef_g = importUndefSigSpec(cell->getPort(ID(G)), timestep); |
| std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID(CI)), timestep); |
| std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID(CO)), timestep); |
| |
| int undef_any_p = ez->expression(ezSAT::OpOr, undef_p); |
| int undef_any_g = ez->expression(ezSAT::OpOr, undef_g); |
| int undef_any_ci = ez->expression(ezSAT::OpOr, undef_ci); |
| int undef_co_bit = ez->OR(undef_any_p, undef_any_g, undef_any_ci); |
| |
| std::vector<int> undef_co_bits(undef_co.size(), undef_co_bit); |
| ez->assume(ez->vec_eq(undef_co_bits, undef_co)); |
| |
| undefGating(co, yy, undef_co); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($alu)) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| std::vector<int> x = importDefSigSpec(cell->getPort(ID(X)), timestep); |
| std::vector<int> ci = importDefSigSpec(cell->getPort(ID(CI)), timestep); |
| std::vector<int> bi = importDefSigSpec(cell->getPort(ID(BI)), timestep); |
| std::vector<int> co = importDefSigSpec(cell->getPort(ID(CO)), timestep); |
| |
| extendSignalWidth(a, b, y, cell); |
| extendSignalWidth(a, b, x, cell); |
| extendSignalWidth(a, b, co, cell); |
| |
| std::vector<int> def_y = model_undef ? ez->vec_var(y.size()) : y; |
| std::vector<int> def_x = model_undef ? ez->vec_var(x.size()) : x; |
| std::vector<int> def_co = model_undef ? ez->vec_var(co.size()) : co; |
| |
| log_assert(GetSize(y) == GetSize(x)); |
| log_assert(GetSize(y) == GetSize(co)); |
| log_assert(GetSize(ci) == 1); |
| log_assert(GetSize(bi) == 1); |
| |
| for (int i = 0; i < GetSize(y); i++) |
| { |
| int s1 = a.at(i), s2 = ez->XOR(b.at(i), bi.at(0)), s3 = i ? co.at(i-1) : ci.at(0); |
| ez->SET(def_x.at(i), ez->XOR(s1, s2)); |
| ez->SET(def_y.at(i), ez->XOR(def_x.at(i), s3)); |
| ez->SET(def_co.at(i), ez->OR(ez->AND(s1, s2), ez->AND(s1, s3), ez->AND(s2, s3))); |
| } |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); |
| std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID(CI)), timestep); |
| std::vector<int> undef_bi = importUndefSigSpec(cell->getPort(ID(BI)), timestep); |
| |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID(X)), timestep); |
| std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID(CO)), timestep); |
| |
| extendSignalWidth(undef_a, undef_b, undef_y, cell); |
| extendSignalWidth(undef_a, undef_b, undef_x, cell); |
| extendSignalWidth(undef_a, undef_b, undef_co, cell); |
| |
| std::vector<int> all_inputs_undef; |
| all_inputs_undef.insert(all_inputs_undef.end(), undef_a.begin(), undef_a.end()); |
| all_inputs_undef.insert(all_inputs_undef.end(), undef_b.begin(), undef_b.end()); |
| all_inputs_undef.insert(all_inputs_undef.end(), undef_ci.begin(), undef_ci.end()); |
| all_inputs_undef.insert(all_inputs_undef.end(), undef_bi.begin(), undef_bi.end()); |
| int undef_any = ez->expression(ezSAT::OpOr, all_inputs_undef); |
| |
| for (int i = 0; i < GetSize(undef_y); i++) { |
| ez->SET(undef_y.at(i), undef_any); |
| ez->SET(undef_x.at(i), ez->OR(undef_a.at(i), undef_b.at(i), undef_bi.at(0))); |
| ez->SET(undef_co.at(i), undef_any); |
| } |
| |
| undefGating(y, def_y, undef_y); |
| undefGating(x, def_x, undef_x); |
| undefGating(co, def_co, undef_co); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($slice)) |
| { |
| RTLIL::SigSpec a = cell->getPort(ID::A); |
| RTLIL::SigSpec y = cell->getPort(ID::Y); |
| ez->assume(signals_eq(a.extract(cell->parameters.at(ID(OFFSET)).as_int(), y.size()), y, timestep)); |
| return true; |
| } |
| |
| if (cell->type == ID($concat)) |
| { |
| RTLIL::SigSpec a = cell->getPort(ID::A); |
| RTLIL::SigSpec b = cell->getPort(ID::B); |
| RTLIL::SigSpec y = cell->getPort(ID::Y); |
| |
| RTLIL::SigSpec ab = a; |
| ab.append(b); |
| |
| ez->assume(signals_eq(ab, y, timestep)); |
| return true; |
| } |
| |
| if (timestep > 0 && cell->type.in(ID($ff), ID($dff), ID($_FF_), ID($_DFF_N_), ID($_DFF_P_))) |
| { |
| if (timestep == 1) |
| { |
| initial_state.add((*sigmap)(cell->getPort(ID(Q)))); |
| } |
| else |
| { |
| std::vector<int> d = importDefSigSpec(cell->getPort(ID(D)), timestep-1); |
| std::vector<int> q = importDefSigSpec(cell->getPort(ID(Q)), timestep); |
| |
| std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q; |
| ez->assume(ez->vec_eq(d, qq)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_d = importUndefSigSpec(cell->getPort(ID(D)), timestep-1); |
| std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID(Q)), timestep); |
| |
| ez->assume(ez->vec_eq(undef_d, undef_q)); |
| undefGating(q, qq, undef_q); |
| } |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($anyconst)) |
| { |
| if (timestep < 2) |
| return true; |
| |
| std::vector<int> d = importDefSigSpec(cell->getPort(ID::Y), timestep-1); |
| std::vector<int> q = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q; |
| ez->assume(ez->vec_eq(d, qq)); |
| |
| if (model_undef) |
| { |
| std::vector<int> undef_d = importUndefSigSpec(cell->getPort(ID::Y), timestep-1); |
| std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| |
| ez->assume(ez->vec_eq(undef_d, undef_q)); |
| undefGating(q, qq, undef_q); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($anyseq)) |
| { |
| return true; |
| } |
| |
| if (cell->type.in(ID($_BUF_), ID($equiv))) |
| { |
| std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(a, y, cell); |
| |
| std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; |
| ez->assume(ez->vec_eq(a, yy)); |
| |
| if (model_undef) { |
| std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| extendSignalWidthUnary(undef_a, undef_y, cell, false); |
| ez->assume(ez->vec_eq(undef_a, undef_y)); |
| undefGating(y, yy, undef_y); |
| } |
| return true; |
| } |
| |
| if (cell->type == ID($initstate)) |
| { |
| auto key = make_pair(prefix, timestep); |
| if (initstates.count(key) == 0) |
| initstates[key] = false; |
| |
| std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); |
| log_assert(GetSize(y) == 1); |
| ez->SET(y[0], initstates[key] ? ez->CONST_TRUE : ez->CONST_FALSE); |
| |
| if (model_undef) { |
| std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); |
| log_assert(GetSize(undef_y) == 1); |
| ez->SET(undef_y[0], ez->CONST_FALSE); |
| } |
| |
| return true; |
| } |
| |
| if (cell->type == ID($assert)) |
| { |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| asserts_a[pf].append((*sigmap)(cell->getPort(ID::A))); |
| asserts_en[pf].append((*sigmap)(cell->getPort(ID(EN)))); |
| return true; |
| } |
| |
| if (cell->type == ID($assume)) |
| { |
| std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); |
| assumes_a[pf].append((*sigmap)(cell->getPort(ID::A))); |
| assumes_en[pf].append((*sigmap)(cell->getPort(ID(EN)))); |
| return true; |
| } |
| |
| // Unsupported internal cell types: $pow $lut |
| // .. and all sequential cells except $dff and $_DFF_[NP]_ |
| return false; |
| } |
| }; |
| |
| YOSYS_NAMESPACE_END |
| |
| #endif |