| /* |
| * yosys -- Yosys Open SYnthesis Suite |
| * |
| * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at> |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| * |
| * --- |
| * |
| * The internal logic cell simulation library. |
| * |
| * This Verilog library contains simple simulation models for the internal |
| * logic cells ($_NOT_ , $_AND_ , ...) that are generated by the default technology |
| * mapper (see "techmap.v" in this directory) and expected by the "abc" pass. |
| * |
| */ |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_BUF_ (A, Y) |
| //- |
| //- A buffer. This cell type is always optimized away by the opt_clean pass. |
| //- |
| //- Truth table: A | Y |
| //- ---+--- |
| //- 0 | 0 |
| //- 1 | 1 |
| //- |
| module \$_BUF_ (A, Y); |
| input A; |
| output Y; |
| assign Y = A; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_NOT_ (A, Y) |
| //- |
| //- An inverter gate. |
| //- |
| //- Truth table: A | Y |
| //- ---+--- |
| //- 0 | 1 |
| //- 1 | 0 |
| //- |
| module \$_NOT_ (A, Y); |
| input A; |
| output Y; |
| assign Y = ~A; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_AND_ (A, B, Y) |
| //- |
| //- A 2-input AND gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 0 |
| //- 0 1 | 0 |
| //- 1 0 | 0 |
| //- 1 1 | 1 |
| //- |
| module \$_AND_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = A & B; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_NAND_ (A, B, Y) |
| //- |
| //- A 2-input NAND gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 1 |
| //- 0 1 | 1 |
| //- 1 0 | 1 |
| //- 1 1 | 0 |
| //- |
| module \$_NAND_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = ~(A & B); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_OR_ (A, B, Y) |
| //- |
| //- A 2-input OR gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 0 |
| //- 0 1 | 1 |
| //- 1 0 | 1 |
| //- 1 1 | 1 |
| //- |
| module \$_OR_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = A | B; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_NOR_ (A, B, Y) |
| //- |
| //- A 2-input NOR gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 1 |
| //- 0 1 | 0 |
| //- 1 0 | 0 |
| //- 1 1 | 0 |
| //- |
| module \$_NOR_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = ~(A | B); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_XOR_ (A, B, Y) |
| //- |
| //- A 2-input XOR gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 0 |
| //- 0 1 | 1 |
| //- 1 0 | 1 |
| //- 1 1 | 0 |
| //- |
| module \$_XOR_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = A ^ B; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_XNOR_ (A, B, Y) |
| //- |
| //- A 2-input XNOR gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 1 |
| //- 0 1 | 0 |
| //- 1 0 | 0 |
| //- 1 1 | 1 |
| //- |
| module \$_XNOR_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = ~(A ^ B); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_ANDNOT_ (A, B, Y) |
| //- |
| //- A 2-input AND-NOT gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 0 |
| //- 0 1 | 0 |
| //- 1 0 | 1 |
| //- 1 1 | 0 |
| //- |
| module \$_ANDNOT_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = A & (~B); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_ORNOT_ (A, B, Y) |
| //- |
| //- A 2-input OR-NOT gate. |
| //- |
| //- Truth table: A B | Y |
| //- -----+--- |
| //- 0 0 | 1 |
| //- 0 1 | 0 |
| //- 1 0 | 1 |
| //- 1 1 | 1 |
| //- |
| module \$_ORNOT_ (A, B, Y); |
| input A, B; |
| output Y; |
| assign Y = A | (~B); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_MUX_ (A, B, S, Y) |
| //- |
| //- A 2-input MUX gate. |
| //- |
| //- Truth table: A B S | Y |
| //- -------+--- |
| //- a - 0 | a |
| //- - b 1 | b |
| //- |
| module \$_MUX_ (A, B, S, Y); |
| input A, B, S; |
| output Y; |
| assign Y = S ? B : A; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_NMUX_ (A, B, S, Y) |
| //- |
| //- A 2-input inverting MUX gate. |
| //- |
| //- Truth table: A B S | Y |
| //- -------+--- |
| //- 0 - 0 | 1 |
| //- 1 - 0 | 0 |
| //- - 0 1 | 1 |
| //- - 1 1 | 0 |
| //- |
| module \$_NMUX_ (A, B, S, Y); |
| input A, B, S; |
| output Y; |
| assign Y = S ? !B : !A; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_MUX4_ (A, B, C, D, S, T, Y) |
| //- |
| //- A 4-input MUX gate. |
| //- |
| //- Truth table: A B C D S T | Y |
| //- -------------+--- |
| //- a - - - 0 0 | a |
| //- - b - - 1 0 | b |
| //- - - c - 0 1 | c |
| //- - - - d 1 1 | d |
| //- |
| module \$_MUX4_ (A, B, C, D, S, T, Y); |
| input A, B, C, D, S, T; |
| output Y; |
| assign Y = T ? (S ? D : C) : |
| (S ? B : A); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y) |
| //- |
| //- An 8-input MUX gate. |
| //- |
| //- Truth table: A B C D E F G H S T U | Y |
| //- -----------------------+--- |
| //- a - - - - - - - 0 0 0 | a |
| //- - b - - - - - - 1 0 0 | b |
| //- - - c - - - - - 0 1 0 | c |
| //- - - - d - - - - 1 1 0 | d |
| //- - - - - e - - - 0 0 1 | e |
| //- - - - - - f - - 1 0 1 | f |
| //- - - - - - - g - 0 1 1 | g |
| //- - - - - - - - h 1 1 1 | h |
| //- |
| module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y); |
| input A, B, C, D, E, F, G, H, S, T, U; |
| output Y; |
| assign Y = U ? T ? (S ? H : G) : |
| (S ? F : E) : |
| T ? (S ? D : C) : |
| (S ? B : A); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y) |
| //- |
| //- A 16-input MUX gate. |
| //- |
| //- Truth table: A B C D E F G H I J K L M N O P S T U V | Y |
| //- -----------------------------------------+--- |
| //- a - - - - - - - - - - - - - - - 0 0 0 0 | a |
| //- - b - - - - - - - - - - - - - - 1 0 0 0 | b |
| //- - - c - - - - - - - - - - - - - 0 1 0 0 | c |
| //- - - - d - - - - - - - - - - - - 1 1 0 0 | d |
| //- - - - - e - - - - - - - - - - - 0 0 1 0 | e |
| //- - - - - - f - - - - - - - - - - 1 0 1 0 | f |
| //- - - - - - - g - - - - - - - - - 0 1 1 0 | g |
| //- - - - - - - - h - - - - - - - - 1 1 1 0 | h |
| //- - - - - - - - - i - - - - - - - 0 0 0 1 | i |
| //- - - - - - - - - - j - - - - - - 1 0 0 1 | j |
| //- - - - - - - - - - - k - - - - - 0 1 0 1 | k |
| //- - - - - - - - - - - - l - - - - 1 1 0 1 | l |
| //- - - - - - - - - - - - - m - - - 0 0 1 1 | m |
| //- - - - - - - - - - - - - - n - - 1 0 1 1 | n |
| //- - - - - - - - - - - - - - - o - 0 1 1 1 | o |
| //- - - - - - - - - - - - - - - - p 1 1 1 1 | p |
| //- |
| module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y); |
| input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V; |
| output Y; |
| assign Y = V ? U ? T ? (S ? P : O) : |
| (S ? N : M) : |
| T ? (S ? L : K) : |
| (S ? J : I) : |
| U ? T ? (S ? H : G) : |
| (S ? F : E) : |
| T ? (S ? D : C) : |
| (S ? B : A); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_AOI3_ (A, B, C, Y) |
| //- |
| //- A 3-input And-Or-Invert gate. |
| //- |
| //- Truth table: A B C | Y |
| //- -------+--- |
| //- 0 0 0 | 1 |
| //- 0 0 1 | 0 |
| //- 0 1 0 | 1 |
| //- 0 1 1 | 0 |
| //- 1 0 0 | 1 |
| //- 1 0 1 | 0 |
| //- 1 1 0 | 0 |
| //- 1 1 1 | 0 |
| //- |
| module \$_AOI3_ (A, B, C, Y); |
| input A, B, C; |
| output Y; |
| assign Y = ~((A & B) | C); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_OAI3_ (A, B, C, Y) |
| //- |
| //- A 3-input Or-And-Invert gate. |
| //- |
| //- Truth table: A B C | Y |
| //- -------+--- |
| //- 0 0 0 | 1 |
| //- 0 0 1 | 1 |
| //- 0 1 0 | 1 |
| //- 0 1 1 | 0 |
| //- 1 0 0 | 1 |
| //- 1 0 1 | 0 |
| //- 1 1 0 | 1 |
| //- 1 1 1 | 0 |
| //- |
| module \$_OAI3_ (A, B, C, Y); |
| input A, B, C; |
| output Y; |
| assign Y = ~((A | B) & C); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_AOI4_ (A, B, C, Y) |
| //- |
| //- A 4-input And-Or-Invert gate. |
| //- |
| //- Truth table: A B C D | Y |
| //- ---------+--- |
| //- 0 0 0 0 | 1 |
| //- 0 0 0 1 | 1 |
| //- 0 0 1 0 | 1 |
| //- 0 0 1 1 | 0 |
| //- 0 1 0 0 | 1 |
| //- 0 1 0 1 | 1 |
| //- 0 1 1 0 | 1 |
| //- 0 1 1 1 | 0 |
| //- 1 0 0 0 | 1 |
| //- 1 0 0 1 | 1 |
| //- 1 0 1 0 | 1 |
| //- 1 0 1 1 | 0 |
| //- 1 1 0 0 | 0 |
| //- 1 1 0 1 | 0 |
| //- 1 1 1 0 | 0 |
| //- 1 1 1 1 | 0 |
| //- |
| module \$_AOI4_ (A, B, C, D, Y); |
| input A, B, C, D; |
| output Y; |
| assign Y = ~((A & B) | (C & D)); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_OAI4_ (A, B, C, Y) |
| //- |
| //- A 4-input Or-And-Invert gate. |
| //- |
| //- Truth table: A B C D | Y |
| //- ---------+--- |
| //- 0 0 0 0 | 1 |
| //- 0 0 0 1 | 1 |
| //- 0 0 1 0 | 1 |
| //- 0 0 1 1 | 1 |
| //- 0 1 0 0 | 1 |
| //- 0 1 0 1 | 0 |
| //- 0 1 1 0 | 0 |
| //- 0 1 1 1 | 0 |
| //- 1 0 0 0 | 1 |
| //- 1 0 0 1 | 0 |
| //- 1 0 1 0 | 0 |
| //- 1 0 1 1 | 0 |
| //- 1 1 0 0 | 1 |
| //- 1 1 0 1 | 0 |
| //- 1 1 1 0 | 0 |
| //- 1 1 1 1 | 0 |
| //- |
| module \$_OAI4_ (A, B, C, D, Y); |
| input A, B, C, D; |
| output Y; |
| assign Y = ~((A | B) & (C | D)); |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_TBUF_ (A, E, Y) |
| //- |
| //- A tri-state buffer. |
| //- |
| //- Truth table: A E | Y |
| //- -----+--- |
| //- a 1 | a |
| //- - 0 | z |
| //- |
| module \$_TBUF_ (A, E, Y); |
| input A, E; |
| output Y; |
| assign Y = E ? A : 1'bz; |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_SR_NN_ (S, R, Q) |
| //- |
| //- A set-reset latch with negative polarity SET and RESET. |
| //- |
| //- Truth table: S R | Q |
| //- -----+--- |
| //- 0 0 | x |
| //- 0 1 | 1 |
| //- 1 0 | 0 |
| //- 1 1 | y |
| //- |
| module \$_SR_NN_ (S, R, Q); |
| input S, R; |
| output reg Q; |
| always @(negedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_SR_NP_ (S, R, Q) |
| //- |
| //- A set-reset latch with negative polarity SET and positive polarity RESET. |
| //- |
| //- Truth table: S R | Q |
| //- -----+--- |
| //- 0 1 | x |
| //- 0 0 | 1 |
| //- 1 1 | 0 |
| //- 1 0 | y |
| //- |
| module \$_SR_NP_ (S, R, Q); |
| input S, R; |
| output reg Q; |
| always @(negedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_SR_PN_ (S, R, Q) |
| //- |
| //- A set-reset latch with positive polarity SET and negative polarity RESET. |
| //- |
| //- Truth table: S R | Q |
| //- -----+--- |
| //- 1 0 | x |
| //- 1 1 | 1 |
| //- 0 0 | 0 |
| //- 0 1 | y |
| //- |
| module \$_SR_PN_ (S, R, Q); |
| input S, R; |
| output reg Q; |
| always @(posedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_SR_PP_ (S, R, Q) |
| //- |
| //- A set-reset latch with positive polarity SET and RESET. |
| //- |
| //- Truth table: S R | Q |
| //- -----+--- |
| //- 1 1 | x |
| //- 1 0 | 1 |
| //- 0 1 | 0 |
| //- 0 0 | y |
| //- |
| module \$_SR_PP_ (S, R, Q); |
| input S, R; |
| output reg Q; |
| always @(posedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| end |
| endmodule |
| |
| `ifdef SIMCELLS_FF |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_FF_ (D, Q) |
| //- |
| //- A D-type flip-flop that is clocked from the implicit global clock. (This cell |
| //- type is usually only used in netlists for formal verification.) |
| //- |
| module \$_FF_ (D, Q); |
| input D; |
| output reg Q; |
| always @($global_clock) begin |
| Q <= D; |
| end |
| endmodule |
| `endif |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_N_ (D, C, Q) |
| //- |
| //- A negative edge D-type flip-flop. |
| //- |
| //- Truth table: D C | Q |
| //- -----+--- |
| //- d \ | d |
| //- - - | q |
| //- |
| module \$_DFF_N_ (D, C, Q); |
| input D, C; |
| output reg Q; |
| always @(negedge C) begin |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_P_ (D, C, Q) |
| //- |
| //- A positive edge D-type flip-flop. |
| //- |
| //- Truth table: D C | Q |
| //- -----+--- |
| //- d / | d |
| //- - - | q |
| //- |
| module \$_DFF_P_ (D, C, Q); |
| input D, C; |
| output reg Q; |
| always @(posedge C) begin |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFE_NN_ (D, C, E, Q) |
| //- |
| //- A negative edge D-type flip-flop with negative polarity enable. |
| //- |
| //- Truth table: D C E | Q |
| //- -------+--- |
| //- d \ 0 | d |
| //- - - - | q |
| //- |
| module \$_DFFE_NN_ (D, C, E, Q); |
| input D, C, E; |
| output reg Q; |
| always @(negedge C) begin |
| if (!E) Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFE_NP_ (D, C, E, Q) |
| //- |
| //- A negative edge D-type flip-flop with positive polarity enable. |
| //- |
| //- Truth table: D C E | Q |
| //- -------+--- |
| //- d \ 1 | d |
| //- - - - | q |
| //- |
| module \$_DFFE_NP_ (D, C, E, Q); |
| input D, C, E; |
| output reg Q; |
| always @(negedge C) begin |
| if (E) Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFE_PN_ (D, C, E, Q) |
| //- |
| //- A positive edge D-type flip-flop with negative polarity enable. |
| //- |
| //- Truth table: D C E | Q |
| //- -------+--- |
| //- d / 0 | d |
| //- - - - | q |
| //- |
| module \$_DFFE_PN_ (D, C, E, Q); |
| input D, C, E; |
| output reg Q; |
| always @(posedge C) begin |
| if (!E) Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFE_PP_ (D, C, E, Q) |
| //- |
| //- A positive edge D-type flip-flop with positive polarity enable. |
| //- |
| //- Truth table: D C E | Q |
| //- -------+--- |
| //- d / 1 | d |
| //- - - - | q |
| //- |
| module \$_DFFE_PP_ (D, C, E, Q); |
| input D, C, E; |
| output reg Q; |
| always @(posedge C) begin |
| if (E) Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_NN0_ (D, C, R, Q) |
| //- |
| //- A negative edge D-type flip-flop with negative polarity reset. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 0 | 0 |
| //- d \ - | d |
| //- - - - | q |
| //- |
| module \$_DFF_NN0_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(negedge C or negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_NN1_ (D, C, R, Q) |
| //- |
| //- A negative edge D-type flip-flop with negative polarity set. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 0 | 1 |
| //- d \ - | d |
| //- - - - | q |
| //- |
| module \$_DFF_NN1_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(negedge C or negedge R) begin |
| if (R == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_NP0_ (D, C, R, Q) |
| //- |
| //- A negative edge D-type flip-flop with positive polarity reset. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 1 | 0 |
| //- d \ - | d |
| //- - - - | q |
| //- |
| module \$_DFF_NP0_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(negedge C or posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_NP1_ (D, C, R, Q) |
| //- |
| //- A negative edge D-type flip-flop with positive polarity set. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 1 | 1 |
| //- d \ - | d |
| //- - - - | q |
| //- |
| module \$_DFF_NP1_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(negedge C or posedge R) begin |
| if (R == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_PN0_ (D, C, R, Q) |
| //- |
| //- A positive edge D-type flip-flop with negative polarity reset. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 0 | 0 |
| //- d / - | d |
| //- - - - | q |
| //- |
| module \$_DFF_PN0_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(posedge C or negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_PN1_ (D, C, R, Q) |
| //- |
| //- A positive edge D-type flip-flop with negative polarity set. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 0 | 1 |
| //- d / - | d |
| //- - - - | q |
| //- |
| module \$_DFF_PN1_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(posedge C or negedge R) begin |
| if (R == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_PP0_ (D, C, R, Q) |
| //- |
| //- A positive edge D-type flip-flop with positive polarity reset. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 1 | 0 |
| //- d / - | d |
| //- - - - | q |
| //- |
| module \$_DFF_PP0_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(posedge C or posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFF_PP1_ (D, C, R, Q) |
| //- |
| //- A positive edge D-type flip-flop with positive polarity set. |
| //- |
| //- Truth table: D C R | Q |
| //- -------+--- |
| //- - - 1 | 1 |
| //- d / - | d |
| //- - - - | q |
| //- |
| module \$_DFF_PP1_ (D, C, R, Q); |
| input D, C, R; |
| output reg Q; |
| always @(posedge C or posedge R) begin |
| if (R == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_NNN_ (C, S, R, D, Q) |
| //- |
| //- A negative edge D-type flip-flop with negative polarity set and reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 0 - - | 1 |
| //- \ - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_NNN_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(negedge C, negedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_NNP_ (C, S, R, D, Q) |
| //- |
| //- A negative edge D-type flip-flop with negative polarity set and positive |
| //- polarity reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 0 - - | 1 |
| //- \ - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_NNP_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(negedge C, negedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_NPN_ (C, S, R, D, Q) |
| //- |
| //- A negative edge D-type flip-flop with positive polarity set and negative |
| //- polarity reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 1 - - | 1 |
| //- \ - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_NPN_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(negedge C, posedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_NPP_ (C, S, R, D, Q) |
| //- |
| //- A negative edge D-type flip-flop with positive polarity set and reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 1 - - | 1 |
| //- \ - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_NPP_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(negedge C, posedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_PNN_ (C, S, R, D, Q) |
| //- |
| //- A positive edge D-type flip-flop with negative polarity set and reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 0 - - | 1 |
| //- / - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_PNN_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(posedge C, negedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_PNP_ (C, S, R, D, Q) |
| //- |
| //- A positive edge D-type flip-flop with negative polarity set and positive |
| //- polarity reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 0 - - | 1 |
| //- / - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_PNP_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(posedge C, negedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_PPN_ (C, S, R, D, Q) |
| //- |
| //- A positive edge D-type flip-flop with positive polarity set and negative |
| //- polarity reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 1 - - | 1 |
| //- / - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_PPN_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(posedge C, posedge S, negedge R) begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DFFSR_PPP_ (C, S, R, D, Q) |
| //- |
| //- A positive edge D-type flip-flop with positive polarity set and reset. |
| //- |
| //- Truth table: C S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 1 - - | 1 |
| //- / - - d | d |
| //- - - - - | q |
| //- |
| module \$_DFFSR_PPP_ (C, S, R, D, Q); |
| input C, S, R, D; |
| output reg Q; |
| always @(posedge C, posedge S, posedge R) begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCH_N_ (E, D, Q) |
| //- |
| //- A negative enable D-type latch. |
| //- |
| //- Truth table: E D | Q |
| //- -----+--- |
| //- 0 d | d |
| //- - - | q |
| //- |
| module \$_DLATCH_N_ (E, D, Q); |
| input E, D; |
| output reg Q; |
| always @* begin |
| if (E == 0) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCH_P_ (E, D, Q) |
| //- |
| //- A positive enable D-type latch. |
| //- |
| //- Truth table: E D | Q |
| //- -----+--- |
| //- 1 d | d |
| //- - - | q |
| //- |
| module \$_DLATCH_P_ (E, D, Q); |
| input E, D; |
| output reg Q; |
| always @* begin |
| if (E == 1) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_NNN_ (E, S, R, D, Q) |
| //- |
| //- A negative enable D-type latch with negative polarity set and reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 0 - - | 1 |
| //- 0 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_NNN_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else if (E == 0) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_NNP_ (E, S, R, D, Q) |
| //- |
| //- A negative enable D-type latch with negative polarity set and positive polarity |
| //- reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 0 - - | 1 |
| //- 0 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_NNP_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else if (E == 0) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_NPN_ (E, S, R, D, Q) |
| //- |
| //- A negative enable D-type latch with positive polarity set and negative polarity |
| //- reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 1 - - | 1 |
| //- 0 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_NPN_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else if (E == 0) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_NPP_ (E, S, R, D, Q) |
| //- |
| //- A negative enable D-type latch with positive polarity set and reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 1 - - | 1 |
| //- 0 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_NPP_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else if (E == 0) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_PNN_ (E, S, R, D, Q) |
| //- |
| //- A positive enable D-type latch with negative polarity set and reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 0 - - | 1 |
| //- 1 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_PNN_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else if (E == 1) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_PNP_ (E, S, R, D, Q) |
| //- |
| //- A positive enable D-type latch with negative polarity set and positive polarity |
| //- reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 0 - - | 1 |
| //- 1 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_PNP_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 0) |
| Q <= 1; |
| else if (E == 1) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_PPN_ (E, S, R, D, Q) |
| //- |
| //- A positive enable D-type latch with positive polarity set and negative polarity |
| //- reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 0 - | 0 |
| //- - 1 - - | 1 |
| //- 1 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_PPN_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 0) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else if (E == 1) |
| Q <= D; |
| end |
| endmodule |
| |
| // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| |
| //- |
| //- $_DLATCHSR_PPP_ (E, S, R, D, Q) |
| //- |
| //- A positive enable D-type latch with positive polarity set and reset. |
| //- |
| //- Truth table: E S R D | Q |
| //- ---------+--- |
| //- - - 1 - | 0 |
| //- - 1 - - | 1 |
| //- 1 - - d | d |
| //- - - - - | q |
| //- |
| module \$_DLATCHSR_PPP_ (E, S, R, D, Q); |
| input E, S, R, D; |
| output reg Q; |
| always @* begin |
| if (R == 1) |
| Q <= 0; |
| else if (S == 1) |
| Q <= 1; |
| else if (E == 1) |
| Q <= D; |
| end |
| endmodule |
| |