| // Copyright 2020-2022 F4PGA Authors | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 | // | 
 | // SPDX-License-Identifier: Apache-2.0 | 
 |  | 
 | `default_nettype wire | 
 | module fifo_ctl ( | 
 | 	raddr, | 
 | 	waddr, | 
 | 	fflags, | 
 | 	ren_o, | 
 | 	sync, | 
 | 	rmode, | 
 | 	wmode, | 
 | 	rclk, | 
 | 	rst_R_n, | 
 | 	wclk, | 
 | 	rst_W_n, | 
 | 	ren, | 
 | 	wen, | 
 | 	upaf, | 
 | 	upae | 
 | ); | 
 | 	parameter ADDR_WIDTH = 11; | 
 | 	parameter FIFO_WIDTH = 3'd2; | 
 | 	parameter DEPTH = 6; | 
 | 	output wire [ADDR_WIDTH - 1:0] raddr; | 
 | 	output wire [ADDR_WIDTH - 1:0] waddr; | 
 | 	output wire [7:0] fflags; | 
 | 	output wire ren_o; | 
 | 	input wire sync; | 
 | 	input wire [1:0] rmode; | 
 | 	input wire [1:0] wmode; | 
 | 	(* clkbuf_sink *) | 
 | 	input wire rclk; | 
 | 	input wire rst_R_n; | 
 | 	(* clkbuf_sink *) | 
 | 	input wire wclk; | 
 | 	input wire rst_W_n; | 
 | 	input wire ren; | 
 | 	input wire wen; | 
 | 	input wire [ADDR_WIDTH - 1:0] upaf; | 
 | 	input wire [ADDR_WIDTH - 1:0] upae; | 
 | 	localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1; | 
 | 	reg [ADDR_WIDTH:0] pushtopop1; | 
 | 	reg [ADDR_WIDTH:0] pushtopop2; | 
 | 	reg [ADDR_WIDTH:0] poptopush1; | 
 | 	reg [ADDR_WIDTH:0] poptopush2; | 
 | 	wire [ADDR_WIDTH:0] pushtopop0; | 
 | 	wire [ADDR_WIDTH:0] poptopush0; | 
 | 	wire [ADDR_WIDTH:0] smux_poptopush; | 
 | 	wire [ADDR_WIDTH:0] smux_pushtopop; | 
 | 	assign smux_poptopush = (sync ? poptopush0 : poptopush2); | 
 | 	assign smux_pushtopop = (sync ? pushtopop0 : pushtopop2); | 
 | 	always @(posedge rclk or negedge rst_R_n) | 
 | 		if (~rst_R_n) begin | 
 | 			pushtopop1 <= 'h0; | 
 | 			pushtopop2 <= 'h0; | 
 | 		end | 
 | 		else begin | 
 | 			pushtopop1 = pushtopop0; | 
 | 			pushtopop2 = pushtopop1; | 
 | 		end | 
 | 	always @(posedge wclk or negedge rst_W_n) | 
 | 		if (~rst_W_n) begin | 
 | 			poptopush1 <= 'h0; | 
 | 			poptopush2 <= 'h0; | 
 | 		end | 
 | 		else begin | 
 | 			poptopush1 <= poptopush0; | 
 | 			poptopush2 <= poptopush1; | 
 | 		end | 
 | 	fifo_push #( | 
 | 		.ADDR_WIDTH(ADDR_WIDTH), | 
 | 		.DEPTH(DEPTH) | 
 | 	) u_fifo_push( | 
 | 		.wclk(wclk), | 
 | 		.wen(wen), | 
 | 		.rst_n(rst_W_n), | 
 | 		.rmode(rmode), | 
 | 		.wmode(wmode), | 
 | 		.gcout(pushtopop0), | 
 | 		.gcin(smux_poptopush), | 
 | 		.ff_waddr(waddr), | 
 | 		.pushflags(fflags[7:4]), | 
 | 		.upaf(upaf) | 
 | 	); | 
 | 	fifo_pop #( | 
 | 		.ADDR_WIDTH(ADDR_WIDTH), | 
 | 		.FIFO_WIDTH(FIFO_WIDTH), | 
 | 		.DEPTH(DEPTH) | 
 | 	) u_fifo_pop( | 
 | 		.rclk(rclk), | 
 | 		.ren_in(ren), | 
 | 		.rst_n(rst_R_n), | 
 | 		.rmode(rmode), | 
 | 		.wmode(wmode), | 
 | 		.ren_o(ren_o), | 
 | 		.gcout(poptopush0), | 
 | 		.gcin(smux_pushtopop), | 
 | 		.out_raddr(raddr), | 
 | 		.popflags(fflags[3:0]), | 
 | 		.upae(upae) | 
 | 	); | 
 | endmodule | 
 | module fifo_push ( | 
 | 	pushflags, | 
 | 	gcout, | 
 | 	ff_waddr, | 
 | 	rst_n, | 
 | 	wclk, | 
 | 	wen, | 
 | 	rmode, | 
 | 	wmode, | 
 | 	gcin, | 
 | 	upaf | 
 | ); | 
 | 	parameter ADDR_WIDTH = 11; | 
 | 	parameter DEPTH = 6; | 
 | 	output wire [3:0] pushflags; | 
 | 	output wire [ADDR_WIDTH:0] gcout; | 
 | 	output wire [ADDR_WIDTH - 1:0] ff_waddr; | 
 | 	input rst_n; | 
 | 	(* clkbuf_sink *) | 
 | 	input wclk; | 
 | 	input wen; | 
 | 	input [1:0] rmode; | 
 | 	input [1:0] wmode; | 
 | 	input [ADDR_WIDTH:0] gcin; | 
 | 	input [ADDR_WIDTH - 1:0] upaf; | 
 | 	localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1; | 
 | 	reg full_next; | 
 | 	reg full; | 
 | 	reg paf_next; | 
 | 	reg paf; | 
 | 	reg fmo; | 
 | 	reg fmo_next; | 
 | 	reg overflow; | 
 | 	reg p1; | 
 | 	reg p2; | 
 | 	reg f1; | 
 | 	reg f2; | 
 | 	reg q1; | 
 | 	reg q2; | 
 | 	reg [1:0] gmode; | 
 | 	reg [ADDR_WIDTH:0] waddr; | 
 | 	reg [ADDR_WIDTH:0] raddr; | 
 | 	reg [ADDR_WIDTH:0] gcout_reg; | 
 | 	reg [ADDR_WIDTH:0] gcout_next; | 
 | 	reg [ADDR_WIDTH:0] raddr_next; | 
 | 	reg [ADDR_WIDTH - 1:0] paf_thresh; | 
 | 	wire overflow_next; | 
 | 	wire [ADDR_WIDTH:0] waddr_next; | 
 | 	wire [ADDR_WIDTH:0] gc8out_next; | 
 | 	wire [ADDR_WIDTH - 1:0] gc16out_next; | 
 | 	wire [ADDR_WIDTH - 2:0] gc32out_next; | 
 | 	wire [ADDR_WIDTH:0] tmp; | 
 | 	wire [ADDR_WIDTH:0] next_count; | 
 | 	wire [ADDR_WIDTH:0] count; | 
 | 	wire [ADDR_WIDTH:0] fbytes; | 
 | 	genvar i; | 
 | 	assign next_count = fbytes - (waddr_next >= raddr_next ? waddr_next - raddr_next : (~raddr_next + waddr_next) + 1); | 
 | 	assign count = fbytes - (waddr >= raddr ? waddr - raddr : (~raddr + waddr) + 1); | 
 | 	assign fbytes = 1 << (DEPTH + 5); | 
 | 	always @(*) begin | 
 | 		paf_thresh = wmode[1] ? upaf : (wmode[0] ? upaf << 1 : upaf << 2); | 
 | 	end | 
 | 	always @(*) | 
 | 		case (wmode) | 
 | 			2'h0, 2'h1, 2'h2: begin | 
 | 				full_next = (wen ? f1 : f2); | 
 | 				fmo_next = (wen ? p1 : p2); | 
 | 				paf_next = (wen ? q1 : q2); | 
 | 			end | 
 | 			default: begin | 
 | 				full_next = 1'b0; | 
 | 				fmo_next = 1'b0; | 
 | 				paf_next = 1'b0; | 
 | 			end | 
 | 		endcase | 
 | 	always @(*) begin : PUSH_FULL_FLAGS | 
 | 		f1 = 1'b0; | 
 | 		f2 = 1'b0; | 
 | 		p1 = 1'b0; | 
 | 		p2 = 1'b0; | 
 | 		q1 = next_count < {1'b0, paf_thresh}; | 
 | 		q2 = count < {1'b0, paf_thresh}; | 
 | 		case (wmode) | 
 | 			2'h0: | 
 | 				case (DEPTH) | 
 | 					3'h6: begin | 
 | 						f1 = {~waddr_next[11], waddr_next[10:2]} == raddr_next[11:2]; | 
 | 						f2 = {~waddr[11], waddr[10:2]} == raddr_next[11:2]; | 
 | 						p1 = ((waddr_next[10:2] + 1) & 9'h1ff) == raddr_next[10:2]; | 
 | 						p2 = ((waddr[10:2] + 1) & 9'h1ff) == raddr_next[10:2]; | 
 | 					end | 
 | 					3'h5: begin | 
 | 						f1 = {~waddr_next[10], waddr_next[9:2]} == raddr_next[10:2]; | 
 | 						f2 = {~waddr[10], waddr[9:2]} == raddr_next[10:2]; | 
 | 						p1 = ((waddr_next[9:2] + 1) & 8'hff) == raddr_next[9:2]; | 
 | 						p2 = ((waddr[9:2] + 1) & 8'hff) == raddr_next[9:2]; | 
 | 					end | 
 | 					3'h4: begin | 
 | 						f1 = {~waddr_next[9], waddr_next[8:2]} == raddr_next[9:2]; | 
 | 						f2 = {~waddr[9], waddr[8:2]} == raddr_next[9:2]; | 
 | 						p1 = ((waddr_next[8:2] + 1) & 7'h7f) == raddr_next[8:2]; | 
 | 						p2 = ((waddr[8:2] + 1) & 7'h7f) == raddr_next[8:2]; | 
 | 					end | 
 | 					3'h3: begin | 
 | 						f1 = {~waddr_next[8], waddr_next[7:2]} == raddr_next[8:2]; | 
 | 						f2 = {~waddr[8], waddr[7:2]} == raddr_next[8:2]; | 
 | 						p1 = ((waddr_next[7:2] + 1) & 6'h3f) == raddr_next[7:2]; | 
 | 						p2 = ((waddr[7:2] + 1) & 6'h3f) == raddr_next[7:2]; | 
 | 					end | 
 | 					3'h2: begin | 
 | 						f1 = {~waddr_next[7], waddr_next[6:2]} == raddr_next[7:2]; | 
 | 						f2 = {~waddr[7], waddr[6:2]} == raddr_next[7:2]; | 
 | 						p1 = ((waddr_next[6:2] + 1) & 5'h1f) == raddr_next[6:2]; | 
 | 						p2 = ((waddr[6:2] + 1) & 5'h1f) == raddr_next[6:2]; | 
 | 					end | 
 | 					3'h1: begin | 
 | 						f1 = {~waddr_next[6], waddr_next[5:2]} == raddr_next[6:2]; | 
 | 						f2 = {~waddr[6], waddr[5:2]} == raddr_next[6:2]; | 
 | 						p1 = ((waddr_next[5:2] + 1) & 4'hf) == raddr_next[5:2]; | 
 | 						p2 = ((waddr[5:2] + 1) & 4'hf) == raddr_next[5:2]; | 
 | 					end | 
 | 					3'h0: begin | 
 | 						f1 = {~waddr_next[5], waddr_next[4:2]} == raddr_next[5:2]; | 
 | 						f2 = {~waddr[5], waddr[4:2]} == raddr_next[5:2]; | 
 | 						p1 = ((waddr_next[4:2] + 1) & 3'h7) == raddr_next[4:2]; | 
 | 						p2 = ((waddr[4:2] + 1) & 3'h7) == raddr_next[4:2]; | 
 | 					end | 
 | 					3'h7: begin | 
 | 						f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:2]} == raddr_next[ADDR_WIDTH:2]; | 
 | 						f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:2]} == raddr_next[ADDR_WIDTH:2]; | 
 | 						p1 = ((waddr_next[ADDR_WIDTH - 1:2] + 1) & {ADDR_WIDTH - 2 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:2]; | 
 | 						p2 = ((waddr[ADDR_WIDTH - 1:2] + 1) & {ADDR_WIDTH - 2 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:2]; | 
 | 					end | 
 | 				endcase | 
 | 			2'h1: | 
 | 				case (DEPTH) | 
 | 					3'h6: begin | 
 | 						f1 = {~waddr_next[11], waddr_next[10:1]} == raddr_next[11:1]; | 
 | 						f2 = {~waddr[11], waddr[10:1]} == raddr_next[11:1]; | 
 | 						p1 = ((waddr_next[10:1] + 1) & 10'h3ff) == raddr_next[10:1]; | 
 | 						p2 = ((waddr[10:1] + 1) & 10'h3ff) == raddr_next[10:1]; | 
 | 					end | 
 | 					3'h5: begin | 
 | 						f1 = {~waddr_next[10], waddr_next[9:1]} == raddr_next[10:1]; | 
 | 						f2 = {~waddr[10], waddr[9:1]} == raddr_next[10:1]; | 
 | 						p1 = ((waddr_next[9:1] + 1) & 9'h1ff) == raddr_next[9:1]; | 
 | 						p2 = ((waddr[9:1] + 1) & 9'h1ff) == raddr_next[9:1]; | 
 | 					end | 
 | 					3'h4: begin | 
 | 						f1 = {~waddr_next[9], waddr_next[8:1]} == raddr_next[9:1]; | 
 | 						f2 = {~waddr[9], waddr[8:1]} == raddr_next[9:1]; | 
 | 						p1 = ((waddr_next[8:1] + 1) & 8'hff) == raddr_next[8:1]; | 
 | 						p2 = ((waddr[8:1] + 1) & 8'hff) == raddr_next[8:1]; | 
 | 					end | 
 | 					3'h3: begin | 
 | 						f1 = {~waddr_next[8], waddr_next[7:1]} == raddr_next[8:1]; | 
 | 						f2 = {~waddr[8], waddr[7:1]} == raddr_next[8:1]; | 
 | 						p1 = ((waddr_next[7:1] + 1) & 7'h7f) == raddr_next[7:1]; | 
 | 						p2 = ((waddr[7:1] + 1) & 7'h7f) == raddr_next[7:1]; | 
 | 					end | 
 | 					3'h2: begin | 
 | 						f1 = {~waddr_next[7], waddr_next[6:1]} == raddr_next[7:1]; | 
 | 						f2 = {~waddr[7], waddr[6:1]} == raddr_next[7:1]; | 
 | 						p1 = ((waddr_next[6:1] + 1) & 6'h3f) == raddr_next[6:1]; | 
 | 						p2 = ((waddr[6:1] + 1) & 6'h3f) == raddr_next[6:1]; | 
 | 					end | 
 | 					3'h1: begin | 
 | 						f1 = {~waddr_next[6], waddr_next[5:1]} == raddr_next[6:1]; | 
 | 						f2 = {~waddr[6], waddr[5:1]} == raddr_next[6:1]; | 
 | 						p1 = ((waddr_next[5:1] + 1) & 5'h1f) == raddr_next[5:1]; | 
 | 						p2 = ((waddr[5:1] + 1) & 5'h1f) == raddr_next[5:1]; | 
 | 					end | 
 | 					3'h0: begin | 
 | 						f1 = {~waddr_next[5], waddr_next[4:1]} == raddr_next[5:1]; | 
 | 						f2 = {~waddr[5], waddr[4:1]} == raddr_next[5:1]; | 
 | 						p1 = ((waddr_next[4:1] + 1) & 4'hf) == raddr_next[4:1]; | 
 | 						p2 = ((waddr[4:1] + 1) & 4'hf) == raddr_next[4:1]; | 
 | 					end | 
 | 					3'h7: begin | 
 | 						f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:1]} == raddr_next[ADDR_WIDTH:1]; | 
 | 						f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:1]} == raddr_next[ADDR_WIDTH:1]; | 
 | 						p1 = ((waddr_next[ADDR_WIDTH - 1:1] + 1) & {ADDR_WIDTH - 1 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:1]; | 
 | 						p2 = ((waddr[ADDR_WIDTH - 1:1] + 1) & {ADDR_WIDTH - 1 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:1]; | 
 | 					end | 
 | 				endcase | 
 | 			2'h2: | 
 | 				case (DEPTH) | 
 | 					3'h6: begin | 
 | 						f1 = {~waddr_next[11], waddr_next[10:0]} == raddr_next[11:0]; | 
 | 						f2 = {~waddr[11], waddr[10:0]} == raddr_next[11:0]; | 
 | 						p1 = ((waddr_next[10:0] + 1) & 11'h7ff) == raddr_next[10:0]; | 
 | 						p2 = ((waddr[10:0] + 1) & 11'h7ff) == raddr_next[10:0]; | 
 | 					end | 
 | 					3'h5: begin | 
 | 						f1 = {~waddr_next[10], waddr_next[9:0]} == raddr_next[10:0]; | 
 | 						f2 = {~waddr[10], waddr[9:0]} == raddr_next[10:0]; | 
 | 						p1 = ((waddr_next[9:0] + 1) & 10'h3ff) == raddr_next[9:0]; | 
 | 						p2 = ((waddr[9:0] + 1) & 10'h3ff) == raddr_next[9:0]; | 
 | 					end | 
 | 					3'h4: begin | 
 | 						f1 = {~waddr_next[9], waddr_next[8:0]} == raddr_next[9:0]; | 
 | 						f2 = {~waddr[9], waddr[8:0]} == raddr_next[9:0]; | 
 | 						p1 = ((waddr_next[8:0] + 1) & 9'h1ff) == raddr_next[8:0]; | 
 | 						p2 = ((waddr[8:0] + 1) & 9'h1ff) == raddr_next[8:0]; | 
 | 					end | 
 | 					3'h3: begin | 
 | 						f1 = {~waddr_next[8], waddr_next[7:0]} == raddr_next[8:0]; | 
 | 						f2 = {~waddr[8], waddr[7:0]} == raddr_next[8:0]; | 
 | 						p1 = ((waddr_next[7:0] + 1) & 8'hff) == raddr_next[7:0]; | 
 | 						p2 = ((waddr[7:0] + 1) & 8'hff) == raddr_next[7:0]; | 
 | 					end | 
 | 					3'h2: begin | 
 | 						f1 = {~waddr_next[7], waddr_next[6:0]} == raddr_next[7:0]; | 
 | 						f2 = {~waddr[7], waddr[6:0]} == raddr_next[7:0]; | 
 | 						p1 = ((waddr_next[6:0] + 1) & 7'h7f) == raddr_next[6:0]; | 
 | 						p2 = ((waddr[6:0] + 1) & 7'h7f) == raddr_next[6:0]; | 
 | 					end | 
 | 					3'h1: begin | 
 | 						f1 = {~waddr_next[6], waddr_next[5:0]} == raddr_next[6:0]; | 
 | 						f2 = {~waddr[6], waddr[5:0]} == raddr_next[6:0]; | 
 | 						p1 = ((waddr_next[5:0] + 1) & 6'h3f) == raddr_next[5:0]; | 
 | 						p2 = ((waddr[5:0] + 1) & 6'h3f) == raddr_next[5:0]; | 
 | 					end | 
 | 					3'h0: begin | 
 | 						f1 = {~waddr_next[5], waddr_next[4:0]} == raddr_next[5:0]; | 
 | 						f2 = {~waddr[5], waddr[4:0]} == raddr_next[5:0]; | 
 | 						p1 = ((waddr_next[4:0] + 1) & 5'h1f) == raddr_next[4:0]; | 
 | 						p2 = ((waddr[4:0] + 1) & 5'h1f) == raddr_next[4:0]; | 
 | 					end | 
 | 					3'h7: begin | 
 | 						f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:0]} == raddr_next[ADDR_WIDTH:0]; | 
 | 						f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:0]} == raddr_next[ADDR_WIDTH:0]; | 
 | 						p1 = ((waddr_next[ADDR_WIDTH - 1:0] + 1) & {ADDR_WIDTH {1'b1}}) == raddr_next[ADDR_WIDTH - 1:0]; | 
 | 						p2 = ((waddr[ADDR_WIDTH - 1:0] + 1) & {ADDR_WIDTH {1'b1}}) == raddr_next[ADDR_WIDTH - 1:0]; | 
 | 					end | 
 | 				endcase | 
 | 			2'h3: begin | 
 | 				f1 = 1'b0; | 
 | 				f2 = 1'b0; | 
 | 				p1 = 1'b0; | 
 | 				p2 = 1'b0; | 
 | 			end | 
 | 		endcase | 
 | 	end | 
 | 	always @(*) | 
 | 		case (wmode) | 
 | 			2'h0: gmode = 2'h0; | 
 | 			2'h1: gmode = (rmode == 2'h0 ? 2'h0 : 2'h1); | 
 | 			2'h2: gmode = (rmode == 2'h2 ? 2'h2 : rmode); | 
 | 			2'h3: gmode = 2'h3; | 
 | 		endcase | 
 | 	assign gc8out_next = (waddr_next >> 1) ^ waddr_next; | 
 | 	assign gc16out_next = (waddr_next >> 2) ^ (waddr_next >> 1); | 
 | 	assign gc32out_next = (waddr_next >> 3) ^ (waddr_next >> 2); | 
 | 	always @(*) | 
 | 		if (wen) | 
 | 			case (gmode) | 
 | 				2'h2: gcout_next = gc8out_next; | 
 | 				2'h1: gcout_next = {1'b0, gc16out_next}; | 
 | 				2'h0: gcout_next = {2'b00, gc32out_next}; | 
 | 				default: gcout_next = {ADDR_PLUS_ONE {1'b0}}; | 
 | 			endcase | 
 | 		else | 
 | 			gcout_next = {ADDR_PLUS_ONE {1'b0}}; | 
 | 	always @(posedge wclk or negedge rst_n) | 
 | 		if (~rst_n) begin | 
 | 			full <= 1'b0; | 
 | 			fmo <= 1'b0; | 
 | 			paf <= 1'b0; | 
 | 			raddr <= {ADDR_PLUS_ONE {1'b0}}; | 
 | 		end | 
 | 		else begin | 
 | 			full <= full_next; | 
 | 			fmo <= fmo_next; | 
 | 			paf <= paf_next; | 
 | 			case (gmode) | 
 | 				0: raddr <= raddr_next & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00}; | 
 | 				1: raddr <= raddr_next & {{ADDR_WIDTH {1'b1}}, 1'b0}; | 
 | 				2: raddr <= raddr_next & {ADDR_WIDTH + 1 {1'b1}}; | 
 | 				3: raddr <= 12'h000; | 
 | 			endcase | 
 | 		end | 
 | 	assign overflow_next = full & wen; | 
 | 	always @(posedge wclk or negedge rst_n) | 
 | 		if (~rst_n) | 
 | 			overflow <= 1'b0; | 
 | 		else if (wen == 1'b1) | 
 | 			overflow <= overflow_next; | 
 | 	always @(posedge wclk or negedge rst_n) | 
 | 		if (~rst_n) begin | 
 | 			waddr <= {ADDR_WIDTH + 1 {1'b0}}; | 
 | 			gcout_reg <= {ADDR_WIDTH + 1 {1'b0}}; | 
 | 		end | 
 | 		else if (wen == 1'b1) begin | 
 | 			waddr <= waddr_next; | 
 | 			gcout_reg <= gcout_next; | 
 | 		end | 
 | 	assign gcout = gcout_reg; | 
 | 	generate | 
 | 		for (i = 0; i < (ADDR_WIDTH + 1); i = i + 1) begin : genblk1 | 
 | 			assign tmp[i] = ^(gcin >> i); | 
 | 		end | 
 | 	endgenerate | 
 | 	always @(*) | 
 | 		case (gmode) | 
 | 			2'h0: raddr_next = {tmp[ADDR_WIDTH - 2:0], 2'b00} & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00}; | 
 | 			2'h1: raddr_next = {tmp[ADDR_WIDTH - 1:0], 1'b0} & {{ADDR_WIDTH {1'b1}}, 1'b0}; | 
 | 			2'h2: raddr_next = {tmp[ADDR_WIDTH:0]} & {ADDR_WIDTH + 1 {1'b1}}; | 
 | 			default: raddr_next = {ADDR_WIDTH + 1 {1'b0}}; | 
 | 		endcase | 
 | 	assign ff_waddr = waddr[ADDR_WIDTH - 1:0]; | 
 | 	assign pushflags = {full, fmo, paf, overflow}; | 
 | 	assign waddr_next = waddr + (wmode == 2'h0 ? 'h4 : (wmode == 2'h1 ? 'h2 : 'h1)); | 
 | endmodule | 
 | module fifo_pop ( | 
 | 	ren_o, | 
 | 	popflags, | 
 | 	out_raddr, | 
 | 	gcout, | 
 | 	rst_n, | 
 | 	rclk, | 
 | 	ren_in, | 
 | 	rmode, | 
 | 	wmode, | 
 | 	gcin, | 
 | 	upae | 
 | ); | 
 | 	parameter ADDR_WIDTH = 11; | 
 | 	parameter FIFO_WIDTH = 3'd2; | 
 | 	parameter DEPTH = 6; | 
 | 	output wire ren_o; | 
 | 	output wire [3:0] popflags; | 
 | 	output reg [ADDR_WIDTH - 1:0] out_raddr; | 
 | 	output wire [ADDR_WIDTH:0] gcout; | 
 | 	input rst_n; | 
 | 	(* clkbuf_sink *) | 
 | 	input rclk; | 
 | 	input ren_in; | 
 | 	input [1:0] rmode; | 
 | 	input [1:0] wmode; | 
 | 	input [ADDR_WIDTH:0] gcin; | 
 | 	input [ADDR_WIDTH - 1:0] upae; | 
 | 	localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1; | 
 | 	reg empty; | 
 | 	reg epo; | 
 | 	reg pae; | 
 | 	reg underflow; | 
 | 	reg e1; | 
 | 	reg e2; | 
 | 	reg o1; | 
 | 	reg o2; | 
 | 	reg q1; | 
 | 	reg q2; | 
 | 	reg [1:0] bwl_sel; | 
 | 	reg [1:0] gmode; | 
 | 	reg [ADDR_WIDTH - 1:0] ff_raddr; | 
 | 	reg [ADDR_WIDTH:0] waddr; | 
 | 	reg [ADDR_WIDTH:0] raddr; | 
 | 	reg [ADDR_WIDTH:0] gcout_reg; | 
 | 	reg [ADDR_WIDTH:0] gcout_next; | 
 | 	reg [ADDR_WIDTH:0] waddr_next; | 
 | 	reg [ADDR_WIDTH - 1:0] pae_thresh; | 
 | 	wire ren_out; | 
 | 	wire empty_next; | 
 | 	wire pae_next; | 
 | 	wire epo_next; | 
 | 	wire [ADDR_WIDTH - 2:0] gc32out_next; | 
 | 	wire [ADDR_WIDTH - 1:0] gc16out_next; | 
 | 	wire [ADDR_WIDTH:0] gc8out_next; | 
 | 	wire [ADDR_WIDTH:0] raddr_next; | 
 | 	wire [ADDR_WIDTH - 1:0] ff_raddr_next; | 
 | 	wire [ADDR_WIDTH:0] tmp; | 
 | 	wire [ADDR_PLUS_ONE:0] next_count; | 
 | 	wire [ADDR_PLUS_ONE:0] count; | 
 | 	wire [ADDR_PLUS_ONE:0] fbytes; | 
 | 	genvar i; | 
 | 	assign next_count = waddr - raddr_next; | 
 | 	assign count = waddr - raddr; | 
 | 	assign fbytes = 1 << (DEPTH + 5); | 
 | 	always @(*) pae_thresh = rmode[1] ? upae : (rmode[0] ? upae << 1 : upae << 2); | 
 | 	assign ren_out = (empty ? 1'b1 : ren_in); | 
 | 	always @(*) | 
 | 		case (rmode) | 
 | 			2'h0: gmode = 2'h0; | 
 | 			2'h1: gmode = (wmode == 2'h0 ? 2'h0 : 2'h1); | 
 | 			2'h2: gmode = (wmode == 2'h2 ? 2'h2 : wmode); | 
 | 			2'h3: gmode = 2'h3; | 
 | 		endcase | 
 | 	always @(*) begin | 
 | 		e1 = 1'b0; | 
 | 		e2 = 1'b0; | 
 | 		o1 = 1'b0; | 
 | 		o2 = 1'b0; | 
 | 		q1 = next_count < {1'b0, pae_thresh}; | 
 | 		q2 = count < {1'b0, pae_thresh}; | 
 | 		case (rmode) | 
 | 			2'h0: begin | 
 | 				e1 = raddr_next[ADDR_WIDTH:2] == waddr_next[ADDR_WIDTH:2]; | 
 | 				e2 = raddr[ADDR_WIDTH:2] == waddr_next[ADDR_WIDTH:2]; | 
 | 				o1 = (raddr_next[ADDR_WIDTH:2] + 1) == waddr_next[ADDR_WIDTH:2]; | 
 | 				o2 = (raddr[ADDR_WIDTH:2] + 1) == waddr_next[ADDR_WIDTH:2]; | 
 | 			end | 
 | 			2'h1: begin | 
 | 				e1 = raddr_next[ADDR_WIDTH:1] == waddr_next[ADDR_WIDTH:1]; | 
 | 				e2 = raddr[ADDR_WIDTH:1] == waddr_next[ADDR_WIDTH:1]; | 
 | 				o1 = (raddr_next[ADDR_WIDTH:1] + 1) == waddr_next[ADDR_WIDTH:1]; | 
 | 				o2 = (raddr[ADDR_WIDTH:1] + 1) == waddr_next[ADDR_WIDTH:1]; | 
 | 			end | 
 | 			2'h2: begin | 
 | 				e1 = raddr_next[ADDR_WIDTH:0] == waddr_next[ADDR_WIDTH:0]; | 
 | 				e2 = raddr[ADDR_WIDTH:0] == waddr_next[ADDR_WIDTH:0]; | 
 | 				o1 = (raddr_next[ADDR_WIDTH:0] + 1) == waddr_next[ADDR_WIDTH:0]; | 
 | 				o2 = (raddr[ADDR_WIDTH:0] + 1) == waddr_next[11:0]; | 
 | 			end | 
 | 			2'h3: begin | 
 | 				e1 = 1'b0; | 
 | 				e2 = 1'b0; | 
 | 				o1 = 1'b0; | 
 | 				o2 = 1'b0; | 
 | 			end | 
 | 		endcase | 
 | 	end | 
 | 	assign empty_next = (ren_in & !empty ? e1 : e2); | 
 | 	assign epo_next = (ren_in & !empty ? o1 : o2); | 
 | 	assign pae_next = (ren_in & !empty ? q1 : q2); | 
 | 	always @(posedge rclk or negedge rst_n) | 
 | 		if (~rst_n) begin | 
 | 			empty <= 1'b1; | 
 | 			pae <= 1'b1; | 
 | 			epo <= 1'b0; | 
 | 		end | 
 | 		else begin | 
 | 			empty <= empty_next; | 
 | 			pae <= pae_next; | 
 | 			epo <= epo_next; | 
 | 		end | 
 | 	assign gc8out_next = (raddr_next >> 1) ^ raddr_next; | 
 | 	assign gc16out_next = (raddr_next >> 2) ^ (raddr_next >> 1); | 
 | 	assign gc32out_next = (raddr_next >> 3) ^ (raddr_next >> 2); | 
 | 	always @(*) | 
 | 		if (ren_in) | 
 | 			case (gmode) | 
 | 				2'h2: gcout_next = gc8out_next; | 
 | 				2'h1: gcout_next = {1'b0, gc16out_next}; | 
 | 				2'h0: gcout_next = {2'b00, gc32out_next}; | 
 | 				default: gcout_next = 'h0; | 
 | 			endcase | 
 | 		else | 
 | 			gcout_next = 'h0; | 
 | 	always @(posedge rclk or negedge rst_n) | 
 | 		if (~rst_n) | 
 | 			waddr <= 12'h000; | 
 | 		else | 
 | 			waddr <= waddr_next; | 
 | 	always @(posedge rclk or negedge rst_n) | 
 | 		if (~rst_n) begin | 
 | 			underflow <= 1'b0; | 
 | 			bwl_sel <= 2'h0; | 
 | 			gcout_reg <= 12'h000; | 
 | 		end | 
 | 		else if (ren_in) begin | 
 | 			underflow <= empty; | 
 | 			if (!empty) begin | 
 | 				bwl_sel <= raddr_next[1:0]; | 
 | 				gcout_reg <= gcout_next; | 
 | 			end | 
 | 		end | 
 | 	generate | 
 | 		for (i = 0; i < (ADDR_WIDTH + 1); i = i + 1) begin : genblk1 | 
 | 			assign tmp[i] = ^(gcin >> i); | 
 | 		end | 
 | 	endgenerate | 
 | 	always @(*) | 
 | 		case (gmode) | 
 | 			2'h0: waddr_next = {tmp[ADDR_WIDTH - 2:0], 2'b00} & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00}; | 
 | 			2'h1: waddr_next = {tmp[ADDR_WIDTH - 1:0], 1'b0} & {{ADDR_WIDTH {1'b1}}, 1'b0}; | 
 | 			2'h2: waddr_next = {tmp[ADDR_WIDTH:0]} & {ADDR_PLUS_ONE {1'b1}}; | 
 | 			default: waddr_next = {ADDR_PLUS_ONE {1'b0}}; | 
 | 		endcase | 
 | 	assign ff_raddr_next = ff_raddr + (rmode == 2'h0 ? 'h4 : (rmode == 2'h1 ? 'h2 : 'h1)); | 
 | 	assign raddr_next = raddr + (rmode == 2'h0 ? 'h4 : (rmode == 2'h1 ? 'h2 : 'h1)); | 
 | 	always @(posedge rclk or negedge rst_n) | 
 | 		if (~rst_n) | 
 | 			ff_raddr <= 1'sb0; | 
 | 		else if (empty & ~empty_next) | 
 | 			ff_raddr <= raddr_next[ADDR_WIDTH - 1:0]; | 
 | 		else if ((ren_in & !empty) & ~empty_next) | 
 | 			ff_raddr <= ff_raddr_next; | 
 | 	always @(posedge rclk or negedge rst_n) | 
 | 		if (~rst_n) | 
 | 			raddr <= 12'h000; | 
 | 		else if (ren_in & !empty) | 
 | 			raddr <= raddr_next; | 
 | 	always @(*) | 
 | 		case (FIFO_WIDTH) | 
 | 			3'h2: out_raddr = {ff_raddr[ADDR_WIDTH - 1:1], bwl_sel[0]}; | 
 | 			3'h4: out_raddr = {ff_raddr[ADDR_WIDTH - 1:2], bwl_sel}; | 
 | 			default: out_raddr = ff_raddr[ADDR_WIDTH - 1:0]; | 
 | 		endcase | 
 | 	assign ren_o = ren_out; | 
 | 	assign gcout = gcout_reg; | 
 | 	assign popflags = {empty, epo, pae, underflow}; | 
 | endmodule | 
 | `default_nettype none |