| ////////////////////////////////////////////////////////////////// |
| // // |
| // L1 Cache for Amber 2 Core // |
| // // |
| // This file is part of the Amber project // |
| // http://www.opencores.org/project,amber // |
| // // |
| // Description // |
| // Synthesizable L1 Unified Data and Instruction Cache // |
| // Cache is 4-way, 256 line and 16 bytes per line for // |
| // a total of 16KB. The cache policy is write-through and // |
| // read allocate. For swap instructions (SWP and SWPB) the // |
| // location is evicted from the cache and read from main // |
| // memory. // |
| // // |
| // Author(s): // |
| // - Conor Santifort, csantifort.amber@gmail.com // |
| // // |
| ////////////////////////////////////////////////////////////////// |
| // // |
| // Copyright (C) 2010 Authors and OPENCORES.ORG // |
| // // |
| // This source file may be used and distributed without // |
| // restriction provided that this copyright statement is not // |
| // removed from the file and that any derivative work contains // |
| // the original copyright notice and the associated disclaimer. // |
| // // |
| // This source file is free software; you can redistribute it // |
| // and/or modify it under the terms of the GNU Lesser General // |
| // Public License as published by the Free Software Foundation; // |
| // either version 2.1 of the License, or (at your option) any // |
| // later version. // |
| // // |
| // This source is distributed in the hope that it will be // |
| // useful, but WITHOUT ANY WARRANTY; without even the implied // |
| // warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // |
| // PURPOSE. See the GNU Lesser General Public License for more // |
| // details. // |
| // // |
| // You should have received a copy of the GNU Lesser General // |
| // Public License along with this source; if not, download it // |
| // from http://www.opencores.org/lgpl.shtml // |
| // // |
| ////////////////////////////////////////////////////////////////// |
| `include "global_defines.v" |
| `include "a23_config_defines.v" |
| |
| module a23_cache |
| #( |
| |
| // --------------------------------------------------------- |
| // Cache Configuration |
| |
| // Limited to Linux 4k page sizes -> 256 lines |
| parameter CACHE_LINES = 256, |
| |
| // This cannot be changed without some major surgeory on |
| // this module |
| parameter CACHE_WORDS_PER_LINE = 4, |
| |
| // Changing this parameter is the recommended |
| // way to change the overall cache size; 2, 4 and 8 ways are supported. |
| // 2 ways -> 8KB cache |
| // 4 ways -> 16KB cache |
| // 8 ways -> 32KB cache |
| parameter WAYS = `A23_CACHE_WAYS , |
| |
| // derived configuration parameters |
| parameter CACHE_ADDR_WIDTH = 8, // log2 ( CACHE_LINES ), // = 8 |
| parameter WORD_SEL_WIDTH = 2, // log2 ( CACHE_WORDS_PER_LINE ), // = 2 |
| parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20 |
| parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag |
| parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128 |
| parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12 |
| parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11 |
| parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4 |
| parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3 |
| parameter WORD_SEL_LSB = 2 // = 2 |
| // --------------------------------------------------------- |
| ) |
| |
| |
| ( |
| input i_clk, |
| |
| // Read / Write requests from core |
| input i_select, |
| input i_exclusive, // exclusive access, part of swap instruction |
| input [31:0] i_write_data, |
| input i_write_enable, // core issued write request |
| input [31:0] i_address, // registered address from execute |
| input [31:0] i_address_nxt, // un-registered version of address from execute stage |
| input [3:0] i_byte_enable, |
| input i_cache_enable, // from co-processor 15 configuration register |
| input i_cache_flush, // from co-processor 15 register |
| |
| output [31:0] o_read_data, |
| input i_core_stall, |
| output o_stall, |
| |
| // WB Read Request |
| output o_wb_req, // Read Request |
| input [31:0] i_wb_address, // wb bus |
| input [31:0] i_wb_read_data, // wb bus |
| input i_wb_stall // wb_stb && !wb_ack |
| ); |
| |
| `include "a23_localparams.v" |
| `include "a23_functions.v" |
| |
| // One-hot encoded |
| localparam C_INIT = 0, |
| C_CORE = 1, |
| C_FILL = 2, |
| C_INVA = 3, |
| C_STATES = 4; |
| |
| localparam [3:0] CS_INIT = 4'd0, |
| CS_IDLE = 4'd1, |
| CS_FILL1 = 4'd2, |
| CS_FILL2 = 4'd3, |
| CS_FILL3 = 4'd4, |
| CS_FILL4 = 4'd5, |
| CS_FILL_COMPLETE = 4'd6, |
| CS_TURN_AROUND = 4'd7, |
| CS_WRITE_HIT1 = 4'd8, |
| CS_EX_DELETE = 4'd9; |
| |
| |
| reg [3:0] c_state = CS_IDLE; |
| reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE; |
| reg [CACHE_ADDR_WIDTH:0] init_count = 'd0; |
| |
| wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0]; |
| wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0]; |
| wire [WAYS-1:0] data_wenable_way; |
| wire [WAYS-1:0] data_hit_way; |
| wire [WAYS-1:0] tag_wenable_way; |
| reg [WAYS-1:0] select_way = 'd0; |
| wire [WAYS-1:0] next_way; |
| reg [WAYS-1:0] valid_bits_r = 'd0; |
| |
| reg [3:0] random_num = 4'hf; |
| |
| wire [CACHE_ADDR_WIDTH-1:0] tag_address; |
| wire [TAG_WIDTH-1:0] tag_wdata; |
| wire tag_wenable; |
| |
| wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata; |
| wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata; |
| wire [CACHE_LINE_WIDTH-1:0] data_wdata; |
| wire [CACHE_ADDR_WIDTH-1:0] data_address; |
| wire [31:0] write_data_word; |
| |
| wire hit; |
| wire read_miss; |
| wire write_miss; |
| wire write_hit; |
| |
| reg [31:0] miss_address = 'd0; |
| wire [CACHE_LINE_WIDTH-1:0] hit_rdata; |
| |
| wire write_stall; |
| wire cache_busy_stall; |
| wire read_stall; |
| |
| wire enable; |
| wire [CACHE_ADDR_WIDTH-1:0] address; |
| |
| reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0; |
| reg wb_read_buf_valid = 'd0; |
| reg [31:0] wb_read_buf_address = 'd0; |
| reg [31:0] wb_read_buf_data = 'd0; |
| wire wb_read_buf_hit; |
| |
| wire exclusive_access; |
| wire ex_read_hit; |
| reg ex_read_hit_r = 'd0; |
| reg [WAYS-1:0] ex_read_hit_way = 'd0; |
| reg [CACHE_ADDR_WIDTH-1:0] ex_read_address; |
| wire ex_read_hit_clear; |
| wire ex_read_cache_busy; |
| |
| genvar i; |
| |
| // ====================================== |
| // Address to use for cache access |
| // ====================================== |
| // If currently stalled then the address for the next |
| // cycle will be the same as it is in the current cycle |
| // |
| assign address = i_core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : |
| i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ; |
| |
| // ====================================== |
| // Outputs |
| // ====================================== |
| assign o_read_data = wb_read_buf_hit ? wb_read_buf_data : |
| i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? hit_rdata [31:0] : |
| i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? hit_rdata [63:32] : |
| i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? hit_rdata [95:64] : |
| hit_rdata [127:96] ; |
| |
| // Don't allow the cache to stall the wb i/f for an exclusive access |
| // The cache needs a couple of cycles to flush a potential copy of the exclusive |
| // address, but the wb can do the access in parallel. So there is no |
| // stall in the state CS_EX_DELETE, even though the cache is out of action. |
| // This works fine as long as the wb is stalling the core |
| assign o_stall = read_stall || write_stall || cache_busy_stall || ex_read_cache_busy; |
| |
| assign o_wb_req = (( read_miss || write_miss ) && c_state == CS_IDLE ) || |
| c_state == CS_WRITE_HIT1; |
| |
| |
| // ====================================== |
| // Cache State Machine |
| // ====================================== |
| |
| // Little State Machine to Flush Tag RAMS |
| always @ ( posedge i_clk ) |
| if ( i_cache_flush ) |
| begin |
| c_state <= C_INIT; |
| source_sel <= 1'd1 << C_INIT; |
| init_count <= 'd0; |
| `ifdef A23_CACHE_DEBUG |
| `TB_DEBUG_MESSAGE |
| $display("Cache Flush"); |
| `endif |
| end |
| else |
| case ( c_state ) |
| CS_INIT : |
| if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] ) |
| begin |
| init_count <= init_count + 1'd1; |
| source_sel <= 1'd1 << C_INIT; |
| end |
| else |
| begin |
| source_sel <= 1'd1 << C_CORE; |
| c_state <= CS_TURN_AROUND; |
| end |
| |
| CS_IDLE : |
| begin |
| source_sel <= 1'd1 << C_CORE; |
| |
| if ( ex_read_hit || ex_read_hit_r ) |
| begin |
| select_way <= data_hit_way | ex_read_hit_way; |
| c_state <= CS_EX_DELETE; |
| source_sel <= 1'd1 << C_INVA; |
| end |
| else if ( read_miss ) |
| begin |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| c_state <= CS_FILL1; |
| end |
| else if ( write_hit ) |
| c_state <= CS_WRITE_HIT1; |
| end |
| |
| |
| CS_FILL1 : |
| begin |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| c_state <= CS_FILL2; |
| end |
| |
| |
| CS_FILL2 : |
| // first read of burst of 4 |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| c_state <= CS_FILL3; |
| |
| |
| CS_FILL3 : |
| // second read of burst of 4 |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| c_state <= CS_FILL4; |
| |
| |
| CS_FILL4 : |
| // third read of burst of 4 |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| begin |
| c_state <= CS_FILL_COMPLETE; |
| source_sel <= 1'd1 << C_FILL; |
| |
| // Pick a way to write the cache update into |
| // Either pick one of the invalid caches, or if all are valid, then pick |
| // one randomly |
| |
| select_way <= next_way; |
| random_num <= {random_num[2], random_num[1], random_num[0], |
| random_num[3]^random_num[2]}; |
| end |
| |
| |
| // Write the read fetch data in this cycle |
| CS_FILL_COMPLETE : |
| // fourth read of burst of 4 |
| // wb read request asserted, wait for ack |
| if ( !i_wb_stall ) |
| begin |
| // Back to normal cache operations, but |
| // use physical address for first read as |
| // address moved before the stall was asserted for the read_miss |
| // However don't use it if its a non-cached address! |
| source_sel <= 1'd1 << C_CORE; |
| c_state <= CS_TURN_AROUND; |
| end |
| |
| |
| // Ignore the tag read data in this cycle |
| // Wait 1 cycle to pre-read the cache and return to normal operation |
| CS_TURN_AROUND : |
| begin |
| c_state <= CS_IDLE; |
| end |
| |
| |
| // Flush the entry matching an exclusive access |
| CS_EX_DELETE: |
| begin |
| `ifdef A23_CACHE_DEBUG |
| `TB_DEBUG_MESSAGE |
| $display("Cache deleted Locked entry"); |
| `endif |
| c_state <= CS_TURN_AROUND; |
| source_sel <= 1'd1 << C_CORE; |
| end |
| |
| |
| CS_WRITE_HIT1: |
| begin |
| // wait for an ack on the wb bus to complete the write |
| if ( !i_wb_stall ) |
| c_state <= CS_IDLE; |
| |
| end |
| endcase |
| |
| |
| // ====================================== |
| // Capture WB Block Read - burst of 4 words |
| // ====================================== |
| always @ ( posedge i_clk ) |
| if ( !i_wb_stall ) |
| wb_rdata_burst <= {i_wb_read_data, wb_rdata_burst[127:32]}; |
| |
| |
| // ====================================== |
| // WB Read Buffer |
| // ====================================== |
| always @ ( posedge i_clk ) |
| begin |
| if ( c_state == CS_FILL1 || c_state == CS_FILL2 || |
| c_state == CS_FILL3 || c_state == CS_FILL4 ) |
| begin |
| if ( !i_wb_stall ) |
| begin |
| wb_read_buf_valid <= 1'd1; |
| wb_read_buf_address <= i_wb_address; |
| wb_read_buf_data <= i_wb_read_data; |
| end |
| end |
| else |
| wb_read_buf_valid <= 1'd0; |
| end |
| |
| |
| // ====================================== |
| // Miss Address |
| // ====================================== |
| always @ ( posedge i_clk ) |
| if ( o_wb_req ) |
| miss_address <= i_address; |
| |
| |
| // ====================================== |
| // Remember Read-Modify-Write Hit |
| // ====================================== |
| assign ex_read_hit_clear = c_state == CS_EX_DELETE; |
| |
| always @ ( posedge i_clk ) |
| if ( ex_read_hit_clear ) |
| begin |
| ex_read_hit_r <= 1'd0; |
| ex_read_hit_way <= 'd0; |
| end |
| else if ( ex_read_hit ) |
| begin |
| |
| `ifdef A23_CACHE_DEBUG |
| `TB_DEBUG_MESSAGE |
| $display ("Exclusive access cache hit address 0x%08h", i_address); |
| `endif |
| |
| ex_read_hit_r <= 1'd1; |
| ex_read_hit_way <= data_hit_way; |
| end |
| else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r ) |
| ex_read_hit_way <= select_way; |
| |
| |
| always @ (posedge i_clk) |
| if ( ex_read_hit ) |
| ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB]; |
| |
| |
| assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : |
| source_sel[C_INVA] ? ex_read_address : |
| source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] : |
| source_sel[C_CORE] ? address : |
| {CACHE_ADDR_WIDTH{1'd0}} ; |
| |
| |
| assign data_address = write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : |
| source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] : |
| source_sel[C_CORE] ? address : |
| {CACHE_ADDR_WIDTH{1'd0}} ; |
| |
| |
| assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} : |
| {TAG_WIDTH{1'd0}} ; |
| |
| |
| // Data comes in off the WB bus in wrap4 with the missed data word first |
| assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata : read_miss_wdata; |
| |
| assign read_miss_wdata = miss_address[3:2] == 2'd0 ? wb_rdata_burst : |
| miss_address[3:2] == 2'd1 ? { wb_rdata_burst[95:0], wb_rdata_burst[127:96] }: |
| miss_address[3:2] == 2'd2 ? { wb_rdata_burst[63:0], wb_rdata_burst[127:64] }: |
| { wb_rdata_burst[31:0], wb_rdata_burst[127:32] }; |
| |
| |
| assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } : |
| i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } : |
| i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } : |
| { write_data_word, hit_rdata[95:0] } ; |
| |
| // Use Byte Enables |
| assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } : |
| i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} : |
| i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} : |
| i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} : |
| i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } : |
| i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} : |
| i_write_data ; |
| |
| |
| assign tag_wenable = source_sel[C_INVA] ? 1'd1 : |
| source_sel[C_FILL] ? 1'd1 : |
| source_sel[C_INIT] ? 1'd1 : |
| source_sel[C_CORE] ? 1'd0 : |
| 1'd0 ; |
| |
| |
| assign enable = i_select && i_cache_enable; |
| |
| assign exclusive_access = i_exclusive && i_cache_enable; |
| |
| |
| // the wb read buffer returns data directly from the wb bus to the |
| // core during a read miss operation |
| assign wb_read_buf_hit = enable && wb_read_buf_address == i_address && wb_read_buf_valid; |
| |
| assign hit = |data_hit_way; |
| |
| assign write_hit = enable && i_write_enable && hit; |
| |
| assign write_miss = enable && i_write_enable && !hit && c_state != CS_WRITE_HIT1; |
| |
| assign read_miss = enable && !i_write_enable && !(hit || wb_read_buf_hit); |
| |
| // Exclusive read hit |
| assign ex_read_hit = exclusive_access && !i_write_enable && (hit || wb_read_buf_hit); |
| |
| // Added to fix rare swap bug which occurs when the cache starts |
| // a fill just as the swap instruction starts to execute. The cache |
| // fails to check for a read hit on the swap read cycle. |
| // This signal stalls the core in that case until after the |
| // fill has completed. |
| assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE; |
| |
| // Need to stall for a write miss to wait for the current wb |
| // read miss access to complete. Also for a write hit, need |
| // to stall for 1 cycle while the data cache is being written to |
| assign write_stall = ( write_hit && c_state != CS_WRITE_HIT1 ) || |
| ( write_miss && ( c_state != CS_IDLE ) ) || |
| i_wb_stall ; |
| |
| assign read_stall = read_miss; |
| |
| // Core may or may not be trying to access cache memory during |
| // this phase of the read fetch. It could be doing e.g. a wb access |
| assign cache_busy_stall = ((c_state == CS_TURN_AROUND || c_state == CS_FILL1) && enable) || |
| c_state == CS_INIT; |
| |
| |
| // ====================================== |
| // Instantiate RAMS |
| // ====================================== |
| |
| generate |
| for ( i=0; i<WAYS;i=i+1 ) begin : rams |
| |
| // Tag RAMs |
| `ifdef XILINX_SPARTAN6_FPGA |
| xs6_sram_256x21_line_en |
| `endif |
| |
| `ifdef XILINX_VIRTEX6_FPGA |
| xv6_sram_256x21_line_en |
| `endif |
| |
| `ifndef XILINX_FPGA |
| generic_sram_line_en |
| `endif |
| |
| #( |
| .DATA_WIDTH ( TAG_WIDTH ), |
| .INITIALIZE_TO_ZERO ( 1 ), |
| .ADDRESS_WIDTH ( CACHE_ADDR_WIDTH )) |
| u_tag ( |
| .i_clk ( i_clk ), |
| .i_write_data ( tag_wdata ), |
| .i_write_enable ( tag_wenable_way[i] ), |
| .i_address ( tag_address ), |
| |
| .o_read_data ( tag_rdata_way[i] ) |
| ); |
| |
| // Data RAMs |
| `ifdef XILINX_SPARTAN6_FPGA |
| xs6_sram_256x128_byte_en |
| `endif |
| |
| `ifdef XILINX_VIRTEX6_FPGA |
| xv6_sram_256x128_byte_en |
| `endif |
| |
| `ifndef XILINX_FPGA |
| generic_sram_byte_en |
| `endif |
| |
| #( |
| .DATA_WIDTH ( CACHE_LINE_WIDTH) , |
| .ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) ) |
| u_data ( |
| .i_clk ( i_clk ), |
| .i_write_data ( data_wdata ), |
| .i_write_enable ( data_wenable_way[i] ), |
| .i_address ( data_address ), |
| .i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ), |
| .o_read_data ( data_rdata_way[i] ) |
| ); |
| |
| |
| // Per tag-ram write-enable |
| assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] ); |
| |
| // Per data-ram write-enable |
| assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) || |
| (write_hit && data_hit_way[i] && c_state == CS_IDLE); |
| // Per data-ram hit flag |
| assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] && |
| tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] && |
| c_state == CS_IDLE; |
| end |
| endgenerate |
| |
| |
| // ====================================== |
| // Register Valid Bits |
| // ====================================== |
| generate |
| if ( WAYS == 2 ) begin : valid_bits_2ways |
| |
| always @ ( posedge i_clk ) |
| if ( c_state == CS_IDLE ) |
| valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1], |
| tag_rdata_way[0][TAG_WIDTH-1]}; |
| |
| end |
| else if ( WAYS == 3 ) begin : valid_bits_3ways |
| |
| always @ ( posedge i_clk ) |
| if ( c_state == CS_IDLE ) |
| valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1], |
| tag_rdata_way[1][TAG_WIDTH-1], |
| tag_rdata_way[0][TAG_WIDTH-1]}; |
| |
| end |
| else if ( WAYS == 4 ) begin : valid_bits_4ways |
| |
| always @ ( posedge i_clk ) |
| if ( c_state == CS_IDLE ) |
| valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1], |
| tag_rdata_way[2][TAG_WIDTH-1], |
| tag_rdata_way[1][TAG_WIDTH-1], |
| tag_rdata_way[0][TAG_WIDTH-1]}; |
| |
| end |
| else begin : valid_bits_8ways |
| |
| always @ ( posedge i_clk ) |
| if ( c_state == CS_IDLE ) |
| valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1], |
| tag_rdata_way[6][TAG_WIDTH-1], |
| tag_rdata_way[5][TAG_WIDTH-1], |
| tag_rdata_way[4][TAG_WIDTH-1], |
| tag_rdata_way[3][TAG_WIDTH-1], |
| tag_rdata_way[2][TAG_WIDTH-1], |
| tag_rdata_way[1][TAG_WIDTH-1], |
| tag_rdata_way[0][TAG_WIDTH-1]}; |
| |
| end |
| endgenerate |
| |
| |
| // ====================================== |
| // Select read hit data |
| // ====================================== |
| generate |
| if ( WAYS == 2 ) begin : read_data_2ways |
| |
| assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : |
| data_hit_way[1] ? data_rdata_way[1] : |
| {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug |
| |
| end |
| else if ( WAYS == 3 ) begin : read_data_3ways |
| |
| assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : |
| data_hit_way[1] ? data_rdata_way[1] : |
| data_hit_way[2] ? data_rdata_way[2] : |
| {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug |
| |
| end |
| else if ( WAYS == 4 ) begin : read_data_4ways |
| |
| assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : |
| data_hit_way[1] ? data_rdata_way[1] : |
| data_hit_way[2] ? data_rdata_way[2] : |
| data_hit_way[3] ? data_rdata_way[3] : |
| {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug |
| |
| end |
| else begin : read_data_8ways |
| |
| assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] : |
| data_hit_way[1] ? data_rdata_way[1] : |
| data_hit_way[2] ? data_rdata_way[2] : |
| data_hit_way[3] ? data_rdata_way[3] : |
| data_hit_way[4] ? data_rdata_way[4] : |
| data_hit_way[5] ? data_rdata_way[5] : |
| data_hit_way[6] ? data_rdata_way[6] : |
| data_hit_way[7] ? data_rdata_way[7] : |
| {CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug |
| |
| end |
| endgenerate |
| |
| |
| // ====================================== |
| // Function to select the way to use |
| // for fills |
| // ====================================== |
| generate |
| if ( WAYS == 2 ) begin : pick_way_2ways |
| |
| assign next_way = pick_way ( valid_bits_r, random_num ); |
| |
| function [WAYS-1:0] pick_way; |
| input [WAYS-1:0] valid_bits; |
| input [3:0] random_num; |
| begin |
| if ( valid_bits[0] == 1'd0 ) |
| // way 0 not occupied so use it |
| pick_way = 2'b01; |
| else if ( valid_bits[1] == 1'd0 ) |
| // way 1 not occupied so use it |
| pick_way = 2'b10; |
| else |
| begin |
| // All ways occupied so pick one randomly |
| case (random_num[3:1]) |
| 3'd0, 3'd3, |
| 3'd5, 3'd6: pick_way = 2'b10; |
| default: pick_way = 2'b01; |
| endcase |
| end |
| end |
| endfunction |
| |
| end |
| else if ( WAYS == 3 ) begin : pick_way_3ways |
| |
| assign next_way = pick_way ( valid_bits_r, random_num ); |
| |
| function [WAYS-1:0] pick_way; |
| input [WAYS-1:0] valid_bits; |
| input [3:0] random_num; |
| begin |
| if ( valid_bits[0] == 1'd0 ) |
| // way 0 not occupied so use it |
| pick_way = 3'b001; |
| else if ( valid_bits[1] == 1'd0 ) |
| // way 1 not occupied so use it |
| pick_way = 3'b010; |
| else if ( valid_bits[2] == 1'd0 ) |
| // way 2 not occupied so use it |
| pick_way = 3'b100; |
| else |
| begin |
| // All ways occupied so pick one randomly |
| case (random_num[3:1]) |
| 3'd0, 3'd1, 3'd2: pick_way = 3'b010; |
| 3'd2, 3'd3, 3'd4: pick_way = 3'b100; |
| default: pick_way = 3'b001; |
| endcase |
| end |
| end |
| endfunction |
| |
| end |
| else if ( WAYS == 4 ) begin : pick_way_4ways |
| |
| assign next_way = pick_way ( valid_bits_r, random_num ); |
| |
| function [WAYS-1:0] pick_way; |
| input [WAYS-1:0] valid_bits; |
| input [3:0] random_num; |
| begin |
| if ( valid_bits[0] == 1'd0 ) |
| // way 0 not occupied so use it |
| pick_way = 4'b0001; |
| else if ( valid_bits[1] == 1'd0 ) |
| // way 1 not occupied so use it |
| pick_way = 4'b0010; |
| else if ( valid_bits[2] == 1'd0 ) |
| // way 2 not occupied so use it |
| pick_way = 4'b0100; |
| else if ( valid_bits[3] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 4'b1000; |
| else |
| begin |
| // All ways occupied so pick one randomly |
| case (random_num[3:1]) |
| 3'd0, 3'd1: pick_way = 4'b0100; |
| 3'd2, 3'd3: pick_way = 4'b1000; |
| 3'd4, 3'd5: pick_way = 4'b0001; |
| default: pick_way = 4'b0010; |
| endcase |
| end |
| end |
| endfunction |
| |
| end |
| else begin : pick_way_8ways |
| |
| assign next_way = pick_way ( valid_bits_r, random_num ); |
| |
| function [WAYS-1:0] pick_way; |
| input [WAYS-1:0] valid_bits; |
| input [3:0] random_num; |
| begin |
| if ( valid_bits[0] == 1'd0 ) |
| // way 0 not occupied so use it |
| pick_way = 8'b00000001; |
| else if ( valid_bits[1] == 1'd0 ) |
| // way 1 not occupied so use it |
| pick_way = 8'b00000010; |
| else if ( valid_bits[2] == 1'd0 ) |
| // way 2 not occupied so use it |
| pick_way = 8'b00000100; |
| else if ( valid_bits[3] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 8'b00001000; |
| else if ( valid_bits[4] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 8'b00010000; |
| else if ( valid_bits[5] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 8'b00100000; |
| else if ( valid_bits[6] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 8'b01000000; |
| else if ( valid_bits[7] == 1'd0 ) |
| // way 3 not occupied so use it |
| pick_way = 8'b10000000; |
| else |
| begin |
| // All ways occupied so pick one randomly |
| case (random_num[3:1]) |
| 3'd0: pick_way = 8'b00010000; |
| 3'd1: pick_way = 8'b00100000; |
| 3'd2: pick_way = 8'b01000000; |
| 3'd3: pick_way = 8'b10000000; |
| 3'd4: pick_way = 8'b00000001; |
| 3'd5: pick_way = 8'b00000010; |
| 3'd6: pick_way = 8'b00000100; |
| default: pick_way = 8'b00001000; |
| endcase |
| end |
| end |
| endfunction |
| |
| end |
| endgenerate |
| |
| |
| // ======================================================== |
| // Debug WB bus - not synthesizable |
| // ======================================================== |
| //synopsys translate_off |
| wire [(6*8)-1:0] xSOURCE_SEL; |
| wire [(20*8)-1:0] xC_STATE; |
| |
| assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" : |
| source_sel[C_INIT] ? "C_INIT" : |
| source_sel[C_FILL] ? "C_FILL" : |
| source_sel[C_INVA] ? "C_INVA" : |
| "UNKNON" ; |
| |
| assign xC_STATE = c_state == CS_INIT ? "CS_INIT" : |
| c_state == CS_IDLE ? "CS_IDLE" : |
| c_state == CS_FILL1 ? "CS_FILL1" : |
| c_state == CS_FILL2 ? "CS_FILL2" : |
| c_state == CS_FILL3 ? "CS_FILL3" : |
| c_state == CS_FILL4 ? "CS_FILL4" : |
| c_state == CS_FILL_COMPLETE ? "CS_FILL_COMPLETE" : |
| c_state == CS_EX_DELETE ? "CS_EX_DELETE" : |
| c_state == CS_TURN_AROUND ? "CS_TURN_AROUND" : |
| c_state == CS_WRITE_HIT1 ? "CS_WRITE_HIT1" : |
| "UNKNOWN" ; |
| |
| |
| generate |
| if ( WAYS == 2 ) begin : check_hit_2ways |
| |
| always @( posedge i_clk ) |
| if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 ) |
| begin |
| `TB_ERROR_MESSAGE |
| $display("Hit in more than one cache ways!"); |
| end |
| |
| end |
| else if ( WAYS == 3 ) begin : check_hit_3ways |
| |
| always @( posedge i_clk ) |
| if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 ) |
| begin |
| `TB_ERROR_MESSAGE |
| $display("Hit in more than one cache ways!"); |
| end |
| |
| end |
| else if ( WAYS == 4 ) begin : check_hit_4ways |
| |
| always @( posedge i_clk ) |
| if ( (data_hit_way[0] + data_hit_way[1] + |
| data_hit_way[2] + data_hit_way[3] ) > 4'd1 ) |
| begin |
| `TB_ERROR_MESSAGE |
| $display("Hit in more than one cache ways!"); |
| end |
| |
| end |
| else if ( WAYS == 8 ) begin : check_hit_8ways |
| |
| always @( posedge i_clk ) |
| if ( (data_hit_way[0] + data_hit_way[1] + |
| data_hit_way[2] + data_hit_way[3] + |
| data_hit_way[4] + data_hit_way[5] + |
| data_hit_way[6] + data_hit_way[7] ) > 4'd1 ) |
| begin |
| `TB_ERROR_MESSAGE |
| $display("Hit in more than one cache ways!"); |
| end |
| |
| end |
| else begin : check_hit_nways |
| |
| initial |
| begin |
| `TB_ERROR_MESSAGE |
| $display("Unsupported number of ways %0d", WAYS); |
| $display("Set A23_CACHE_WAYS in a23_config_defines.v to either 2,3,4 or 8"); |
| end |
| |
| end |
| endgenerate |
| |
| //synopsys translate_on |
| |
| endmodule |
| |