blob: 46021c515841069c32551612cf4f152420767bbb [file] [log] [blame]
//////////////////////////////////////////////////////////////////
// //
// L1 Cache for Amber 2 Core //
// //
// This file is part of the Amber project //
// http://www.opencores.org/project,amber //
// //
// Description //
// Synthesizable L1 Unified Data and Instruction Cache //
// Cache is 4-way, 256 line and 16 bytes per line for //
// a total of 16KB. The cache policy is write-through and //
// read allocate. For swap instructions (SWP and SWPB) the //
// location is evicted from the cache and read from main //
// memory. //
// //
// Author(s): //
// - Conor Santifort, csantifort.amber@gmail.com //
// //
//////////////////////////////////////////////////////////////////
// //
// Copyright (C) 2010 Authors and OPENCORES.ORG //
// //
// This source file may be used and distributed without //
// restriction provided that this copyright statement is not //
// removed from the file and that any derivative work contains //
// the original copyright notice and the associated disclaimer. //
// //
// This source file is free software; you can redistribute it //
// and/or modify it under the terms of the GNU Lesser General //
// Public License as published by the Free Software Foundation; //
// either version 2.1 of the License, or (at your option) any //
// later version. //
// //
// This source is distributed in the hope that it will be //
// useful, but WITHOUT ANY WARRANTY; without even the implied //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
// PURPOSE. See the GNU Lesser General Public License for more //
// details. //
// //
// You should have received a copy of the GNU Lesser General //
// Public License along with this source; if not, download it //
// from http://www.opencores.org/lgpl.shtml //
// //
//////////////////////////////////////////////////////////////////
`include "global_defines.v"
`include "a23_config_defines.v"
module a23_cache
#(
// ---------------------------------------------------------
// Cache Configuration
// Limited to Linux 4k page sizes -> 256 lines
parameter CACHE_LINES = 256,
// This cannot be changed without some major surgeory on
// this module
parameter CACHE_WORDS_PER_LINE = 4,
// Changing this parameter is the recommended
// way to change the overall cache size; 2, 4 and 8 ways are supported.
// 2 ways -> 8KB cache
// 4 ways -> 16KB cache
// 8 ways -> 32KB cache
parameter WAYS = `A23_CACHE_WAYS ,
// derived configuration parameters
parameter CACHE_ADDR_WIDTH = 8, // log2 ( CACHE_LINES ), // = 8
parameter WORD_SEL_WIDTH = 2, // log2 ( CACHE_WORDS_PER_LINE ), // = 2
parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20
parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag
parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128
parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12
parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11
parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4
parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3
parameter WORD_SEL_LSB = 2 // = 2
// ---------------------------------------------------------
)
(
input i_clk,
// Read / Write requests from core
input i_select,
input i_exclusive, // exclusive access, part of swap instruction
input [31:0] i_write_data,
input i_write_enable, // core issued write request
input [31:0] i_address, // registered address from execute
input [31:0] i_address_nxt, // un-registered version of address from execute stage
input [3:0] i_byte_enable,
input i_cache_enable, // from co-processor 15 configuration register
input i_cache_flush, // from co-processor 15 register
output [31:0] o_read_data,
input i_core_stall,
output o_stall,
// WB Read Request
output o_wb_req, // Read Request
input [31:0] i_wb_address, // wb bus
input [31:0] i_wb_read_data, // wb bus
input i_wb_stall // wb_stb && !wb_ack
);
`include "a23_localparams.v"
`include "a23_functions.v"
// One-hot encoded
localparam C_INIT = 0,
C_CORE = 1,
C_FILL = 2,
C_INVA = 3,
C_STATES = 4;
localparam [3:0] CS_INIT = 4'd0,
CS_IDLE = 4'd1,
CS_FILL1 = 4'd2,
CS_FILL2 = 4'd3,
CS_FILL3 = 4'd4,
CS_FILL4 = 4'd5,
CS_FILL_COMPLETE = 4'd6,
CS_TURN_AROUND = 4'd7,
CS_WRITE_HIT1 = 4'd8,
CS_EX_DELETE = 4'd9;
reg [3:0] c_state = CS_IDLE;
reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE;
reg [CACHE_ADDR_WIDTH:0] init_count = 'd0;
wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0];
wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0];
wire [WAYS-1:0] data_wenable_way;
wire [WAYS-1:0] data_hit_way;
wire [WAYS-1:0] tag_wenable_way;
reg [WAYS-1:0] select_way = 'd0;
wire [WAYS-1:0] next_way;
reg [WAYS-1:0] valid_bits_r = 'd0;
reg [3:0] random_num = 4'hf;
wire [CACHE_ADDR_WIDTH-1:0] tag_address;
wire [TAG_WIDTH-1:0] tag_wdata;
wire tag_wenable;
wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata;
wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata;
wire [CACHE_LINE_WIDTH-1:0] data_wdata;
wire [CACHE_ADDR_WIDTH-1:0] data_address;
wire [31:0] write_data_word;
wire hit;
wire read_miss;
wire write_miss;
wire write_hit;
reg [31:0] miss_address = 'd0;
wire [CACHE_LINE_WIDTH-1:0] hit_rdata;
wire write_stall;
wire cache_busy_stall;
wire read_stall;
wire enable;
wire [CACHE_ADDR_WIDTH-1:0] address;
reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0;
reg wb_read_buf_valid = 'd0;
reg [31:0] wb_read_buf_address = 'd0;
reg [31:0] wb_read_buf_data = 'd0;
wire wb_read_buf_hit;
wire exclusive_access;
wire ex_read_hit;
reg ex_read_hit_r = 'd0;
reg [WAYS-1:0] ex_read_hit_way = 'd0;
reg [CACHE_ADDR_WIDTH-1:0] ex_read_address;
wire ex_read_hit_clear;
wire ex_read_cache_busy;
genvar i;
// ======================================
// Address to use for cache access
// ======================================
// If currently stalled then the address for the next
// cycle will be the same as it is in the current cycle
//
assign address = i_core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ;
// ======================================
// Outputs
// ======================================
assign o_read_data = wb_read_buf_hit ? wb_read_buf_data :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? hit_rdata [31:0] :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? hit_rdata [63:32] :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? hit_rdata [95:64] :
hit_rdata [127:96] ;
// Don't allow the cache to stall the wb i/f for an exclusive access
// The cache needs a couple of cycles to flush a potential copy of the exclusive
// address, but the wb can do the access in parallel. So there is no
// stall in the state CS_EX_DELETE, even though the cache is out of action.
// This works fine as long as the wb is stalling the core
assign o_stall = read_stall || write_stall || cache_busy_stall || ex_read_cache_busy;
assign o_wb_req = (( read_miss || write_miss ) && c_state == CS_IDLE ) ||
c_state == CS_WRITE_HIT1;
// ======================================
// Cache State Machine
// ======================================
// Little State Machine to Flush Tag RAMS
always @ ( posedge i_clk )
if ( i_cache_flush )
begin
c_state <= C_INIT;
source_sel <= 1'd1 << C_INIT;
init_count <= 'd0;
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display("Cache Flush");
`endif
end
else
case ( c_state )
CS_INIT :
if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] )
begin
init_count <= init_count + 1'd1;
source_sel <= 1'd1 << C_INIT;
end
else
begin
source_sel <= 1'd1 << C_CORE;
c_state <= CS_TURN_AROUND;
end
CS_IDLE :
begin
source_sel <= 1'd1 << C_CORE;
if ( ex_read_hit || ex_read_hit_r )
begin
select_way <= data_hit_way | ex_read_hit_way;
c_state <= CS_EX_DELETE;
source_sel <= 1'd1 << C_INVA;
end
else if ( read_miss )
begin
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL1;
end
else if ( write_hit )
c_state <= CS_WRITE_HIT1;
end
CS_FILL1 :
begin
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL2;
end
CS_FILL2 :
// first read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL3;
CS_FILL3 :
// second read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL4;
CS_FILL4 :
// third read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
begin
c_state <= CS_FILL_COMPLETE;
source_sel <= 1'd1 << C_FILL;
// Pick a way to write the cache update into
// Either pick one of the invalid caches, or if all are valid, then pick
// one randomly
select_way <= next_way;
random_num <= {random_num[2], random_num[1], random_num[0],
random_num[3]^random_num[2]};
end
// Write the read fetch data in this cycle
CS_FILL_COMPLETE :
// fourth read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
begin
// Back to normal cache operations, but
// use physical address for first read as
// address moved before the stall was asserted for the read_miss
// However don't use it if its a non-cached address!
source_sel <= 1'd1 << C_CORE;
c_state <= CS_TURN_AROUND;
end
// Ignore the tag read data in this cycle
// Wait 1 cycle to pre-read the cache and return to normal operation
CS_TURN_AROUND :
begin
c_state <= CS_IDLE;
end
// Flush the entry matching an exclusive access
CS_EX_DELETE:
begin
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display("Cache deleted Locked entry");
`endif
c_state <= CS_TURN_AROUND;
source_sel <= 1'd1 << C_CORE;
end
CS_WRITE_HIT1:
begin
// wait for an ack on the wb bus to complete the write
if ( !i_wb_stall )
c_state <= CS_IDLE;
end
endcase
// ======================================
// Capture WB Block Read - burst of 4 words
// ======================================
always @ ( posedge i_clk )
if ( !i_wb_stall )
wb_rdata_burst <= {i_wb_read_data, wb_rdata_burst[127:32]};
// ======================================
// WB Read Buffer
// ======================================
always @ ( posedge i_clk )
begin
if ( c_state == CS_FILL1 || c_state == CS_FILL2 ||
c_state == CS_FILL3 || c_state == CS_FILL4 )
begin
if ( !i_wb_stall )
begin
wb_read_buf_valid <= 1'd1;
wb_read_buf_address <= i_wb_address;
wb_read_buf_data <= i_wb_read_data;
end
end
else
wb_read_buf_valid <= 1'd0;
end
// ======================================
// Miss Address
// ======================================
always @ ( posedge i_clk )
if ( o_wb_req )
miss_address <= i_address;
// ======================================
// Remember Read-Modify-Write Hit
// ======================================
assign ex_read_hit_clear = c_state == CS_EX_DELETE;
always @ ( posedge i_clk )
if ( ex_read_hit_clear )
begin
ex_read_hit_r <= 1'd0;
ex_read_hit_way <= 'd0;
end
else if ( ex_read_hit )
begin
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display ("Exclusive access cache hit address 0x%08h", i_address);
`endif
ex_read_hit_r <= 1'd1;
ex_read_hit_way <= data_hit_way;
end
else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r )
ex_read_hit_way <= select_way;
always @ (posedge i_clk)
if ( ex_read_hit )
ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB];
assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_INVA] ? ex_read_address :
source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] :
source_sel[C_CORE] ? address :
{CACHE_ADDR_WIDTH{1'd0}} ;
assign data_address = write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_CORE] ? address :
{CACHE_ADDR_WIDTH{1'd0}} ;
assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} :
{TAG_WIDTH{1'd0}} ;
// Data comes in off the WB bus in wrap4 with the missed data word first
assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata : read_miss_wdata;
assign read_miss_wdata = miss_address[3:2] == 2'd0 ? wb_rdata_burst :
miss_address[3:2] == 2'd1 ? { wb_rdata_burst[95:0], wb_rdata_burst[127:96] }:
miss_address[3:2] == 2'd2 ? { wb_rdata_burst[63:0], wb_rdata_burst[127:64] }:
{ wb_rdata_burst[31:0], wb_rdata_burst[127:32] };
assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } :
i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } :
i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } :
{ write_data_word, hit_rdata[95:0] } ;
// Use Byte Enables
assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } :
i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} :
i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} :
i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} :
i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } :
i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} :
i_write_data ;
assign tag_wenable = source_sel[C_INVA] ? 1'd1 :
source_sel[C_FILL] ? 1'd1 :
source_sel[C_INIT] ? 1'd1 :
source_sel[C_CORE] ? 1'd0 :
1'd0 ;
assign enable = i_select && i_cache_enable;
assign exclusive_access = i_exclusive && i_cache_enable;
// the wb read buffer returns data directly from the wb bus to the
// core during a read miss operation
assign wb_read_buf_hit = enable && wb_read_buf_address == i_address && wb_read_buf_valid;
assign hit = |data_hit_way;
assign write_hit = enable && i_write_enable && hit;
assign write_miss = enable && i_write_enable && !hit && c_state != CS_WRITE_HIT1;
assign read_miss = enable && !i_write_enable && !(hit || wb_read_buf_hit);
// Exclusive read hit
assign ex_read_hit = exclusive_access && !i_write_enable && (hit || wb_read_buf_hit);
// Added to fix rare swap bug which occurs when the cache starts
// a fill just as the swap instruction starts to execute. The cache
// fails to check for a read hit on the swap read cycle.
// This signal stalls the core in that case until after the
// fill has completed.
assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE;
// Need to stall for a write miss to wait for the current wb
// read miss access to complete. Also for a write hit, need
// to stall for 1 cycle while the data cache is being written to
assign write_stall = ( write_hit && c_state != CS_WRITE_HIT1 ) ||
( write_miss && ( c_state != CS_IDLE ) ) ||
i_wb_stall ;
assign read_stall = read_miss;
// Core may or may not be trying to access cache memory during
// this phase of the read fetch. It could be doing e.g. a wb access
assign cache_busy_stall = ((c_state == CS_TURN_AROUND || c_state == CS_FILL1) && enable) ||
c_state == CS_INIT;
// ======================================
// Instantiate RAMS
// ======================================
generate
for ( i=0; i<WAYS;i=i+1 ) begin : rams
// Tag RAMs
`ifdef XILINX_SPARTAN6_FPGA
xs6_sram_256x21_line_en
`endif
`ifdef XILINX_VIRTEX6_FPGA
xv6_sram_256x21_line_en
`endif
`ifndef XILINX_FPGA
generic_sram_line_en
`endif
#(
.DATA_WIDTH ( TAG_WIDTH ),
.INITIALIZE_TO_ZERO ( 1 ),
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH ))
u_tag (
.i_clk ( i_clk ),
.i_write_data ( tag_wdata ),
.i_write_enable ( tag_wenable_way[i] ),
.i_address ( tag_address ),
.o_read_data ( tag_rdata_way[i] )
);
// Data RAMs
`ifdef XILINX_SPARTAN6_FPGA
xs6_sram_256x128_byte_en
`endif
`ifdef XILINX_VIRTEX6_FPGA
xv6_sram_256x128_byte_en
`endif
`ifndef XILINX_FPGA
generic_sram_byte_en
`endif
#(
.DATA_WIDTH ( CACHE_LINE_WIDTH) ,
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) )
u_data (
.i_clk ( i_clk ),
.i_write_data ( data_wdata ),
.i_write_enable ( data_wenable_way[i] ),
.i_address ( data_address ),
.i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ),
.o_read_data ( data_rdata_way[i] )
);
// Per tag-ram write-enable
assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] );
// Per data-ram write-enable
assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) ||
(write_hit && data_hit_way[i] && c_state == CS_IDLE);
// Per data-ram hit flag
assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] &&
tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] &&
c_state == CS_IDLE;
end
endgenerate
// ======================================
// Register Valid Bits
// ======================================
generate
if ( WAYS == 2 ) begin : valid_bits_2ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else if ( WAYS == 3 ) begin : valid_bits_3ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else if ( WAYS == 4 ) begin : valid_bits_4ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1],
tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else begin : valid_bits_8ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1],
tag_rdata_way[6][TAG_WIDTH-1],
tag_rdata_way[5][TAG_WIDTH-1],
tag_rdata_way[4][TAG_WIDTH-1],
tag_rdata_way[3][TAG_WIDTH-1],
tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
endgenerate
// ======================================
// Select read hit data
// ======================================
generate
if ( WAYS == 2 ) begin : read_data_2ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else if ( WAYS == 3 ) begin : read_data_3ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else if ( WAYS == 4 ) begin : read_data_4ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
data_hit_way[3] ? data_rdata_way[3] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else begin : read_data_8ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
data_hit_way[3] ? data_rdata_way[3] :
data_hit_way[4] ? data_rdata_way[4] :
data_hit_way[5] ? data_rdata_way[5] :
data_hit_way[6] ? data_rdata_way[6] :
data_hit_way[7] ? data_rdata_way[7] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
endgenerate
// ======================================
// Function to select the way to use
// for fills
// ======================================
generate
if ( WAYS == 2 ) begin : pick_way_2ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 2'b01;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 2'b10;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd3,
3'd5, 3'd6: pick_way = 2'b10;
default: pick_way = 2'b01;
endcase
end
end
endfunction
end
else if ( WAYS == 3 ) begin : pick_way_3ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 3'b001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 3'b010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 3'b100;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd1, 3'd2: pick_way = 3'b010;
3'd2, 3'd3, 3'd4: pick_way = 3'b100;
default: pick_way = 3'b001;
endcase
end
end
endfunction
end
else if ( WAYS == 4 ) begin : pick_way_4ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 4'b0001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 4'b0010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 4'b0100;
else if ( valid_bits[3] == 1'd0 )
// way 3 not occupied so use it
pick_way = 4'b1000;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd1: pick_way = 4'b0100;
3'd2, 3'd3: pick_way = 4'b1000;
3'd4, 3'd5: pick_way = 4'b0001;
default: pick_way = 4'b0010;
endcase
end
end
endfunction
end
else begin : pick_way_8ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 8'b00000001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 8'b00000010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 8'b00000100;
else if ( valid_bits[3] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00001000;
else if ( valid_bits[4] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00010000;
else if ( valid_bits[5] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00100000;
else if ( valid_bits[6] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b01000000;
else if ( valid_bits[7] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b10000000;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0: pick_way = 8'b00010000;
3'd1: pick_way = 8'b00100000;
3'd2: pick_way = 8'b01000000;
3'd3: pick_way = 8'b10000000;
3'd4: pick_way = 8'b00000001;
3'd5: pick_way = 8'b00000010;
3'd6: pick_way = 8'b00000100;
default: pick_way = 8'b00001000;
endcase
end
end
endfunction
end
endgenerate
// ========================================================
// Debug WB bus - not synthesizable
// ========================================================
//synopsys translate_off
wire [(6*8)-1:0] xSOURCE_SEL;
wire [(20*8)-1:0] xC_STATE;
assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" :
source_sel[C_INIT] ? "C_INIT" :
source_sel[C_FILL] ? "C_FILL" :
source_sel[C_INVA] ? "C_INVA" :
"UNKNON" ;
assign xC_STATE = c_state == CS_INIT ? "CS_INIT" :
c_state == CS_IDLE ? "CS_IDLE" :
c_state == CS_FILL1 ? "CS_FILL1" :
c_state == CS_FILL2 ? "CS_FILL2" :
c_state == CS_FILL3 ? "CS_FILL3" :
c_state == CS_FILL4 ? "CS_FILL4" :
c_state == CS_FILL_COMPLETE ? "CS_FILL_COMPLETE" :
c_state == CS_EX_DELETE ? "CS_EX_DELETE" :
c_state == CS_TURN_AROUND ? "CS_TURN_AROUND" :
c_state == CS_WRITE_HIT1 ? "CS_WRITE_HIT1" :
"UNKNOWN" ;
generate
if ( WAYS == 2 ) begin : check_hit_2ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 3 ) begin : check_hit_3ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 4 ) begin : check_hit_4ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] +
data_hit_way[2] + data_hit_way[3] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 8 ) begin : check_hit_8ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] +
data_hit_way[2] + data_hit_way[3] +
data_hit_way[4] + data_hit_way[5] +
data_hit_way[6] + data_hit_way[7] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else begin : check_hit_nways
initial
begin
`TB_ERROR_MESSAGE
$display("Unsupported number of ways %0d", WAYS);
$display("Set A23_CACHE_WAYS in a23_config_defines.v to either 2,3,4 or 8");
end
end
endgenerate
//synopsys translate_on
endmodule