blob: a1e3962afb71624fb7c943b93401a081c3535ef4 [file] [log] [blame]
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg_i2c.v
//
// *Module Description:
// Debug I2C Slave communication interface
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_dbg_i2c (
// OUTPUTs
dbg_addr, // Debug register address
dbg_din, // Debug register data input
dbg_i2c_sda_out, // Debug interface: I2C SDA OUT
dbg_rd, // Debug register data read
dbg_wr, // Debug register data write
// INPUTs
dbg_clk, // Debug unit clock
dbg_dout, // Debug register data output
dbg_i2c_addr, // Debug interface: I2C ADDRESS
dbg_i2c_broadcast, // Debug interface: I2C Broadcast Address (for multicore systems)
dbg_i2c_scl, // Debug interface: I2C SCL
dbg_i2c_sda_in, // Debug interface: I2C SDA IN
dbg_rd_rdy, // Debug register data is ready for read
dbg_rst, // Debug unit reset
mem_burst, // Burst on going
mem_burst_end, // End TX/RX burst
mem_burst_rd, // Start TX burst
mem_burst_wr, // Start RX burst
mem_bw // Burst byte width
);
// OUTPUTs
//=========
output [5:0] dbg_addr; // Debug register address
output [15:0] dbg_din; // Debug register data input
output dbg_i2c_sda_out; // Debug interface: I2C SDA OUT
output dbg_rd; // Debug register data read
output dbg_wr; // Debug register data write
// INPUTs
//=========
input dbg_clk; // Debug unit clock
input [15:0] dbg_dout; // Debug register data output
input [6:0] dbg_i2c_addr; // Debug interface: I2C ADDRESS
input [6:0] dbg_i2c_broadcast; // Debug interface: I2C Broadcast Address (for multicore systems)
input dbg_i2c_scl; // Debug interface: I2C SCL
input dbg_i2c_sda_in; // Debug interface: I2C SDA IN
input dbg_rd_rdy; // Debug register data is ready for read
input dbg_rst; // Debug unit reset
input mem_burst; // Burst on going
input mem_burst_end; // End TX/RX burst
input mem_burst_rd; // Start TX burst
input mem_burst_wr; // Start RX burst
input mem_bw; // Burst byte width
//=============================================================================
// 1) I2C RECEIVE LINE SYNCHRONIZTION & FILTERING
//=============================================================================
// Synchronize SCL/SDA inputs
//--------------------------------
wire scl_sync_n;
omsp_sync_cell sync_cell_i2c_scl (
.data_out (scl_sync_n),
.data_in (~dbg_i2c_scl),
.clk (dbg_clk),
.rst (dbg_rst)
);
wire scl_sync = ~scl_sync_n;
wire sda_in_sync_n;
omsp_sync_cell sync_cell_i2c_sda (
.data_out (sda_in_sync_n),
.data_in (~dbg_i2c_sda_in),
.clk (dbg_clk),
.rst (dbg_rst)
);
wire sda_in_sync = ~sda_in_sync_n;
// SCL/SDA input buffers
//--------------------------------
reg [1:0] scl_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) scl_buf <= 2'h3;
else scl_buf <= {scl_buf[0], scl_sync};
reg [1:0] sda_in_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) sda_in_buf <= 2'h3;
else sda_in_buf <= {sda_in_buf[0], sda_in_sync};
// SCL/SDA Majority decision
//------------------------------
wire scl = (scl_sync & scl_buf[0]) |
(scl_sync & scl_buf[1]) |
(scl_buf[0] & scl_buf[1]);
wire sda_in = (sda_in_sync & sda_in_buf[0]) |
(sda_in_sync & sda_in_buf[1]) |
(sda_in_buf[0] & sda_in_buf[1]);
// SCL/SDA Edge detection
//------------------------------
// SDA Edge detection
reg sda_in_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) sda_in_dly <= 1'b1;
else sda_in_dly <= sda_in;
wire sda_in_fe = sda_in_dly & ~sda_in;
wire sda_in_re = ~sda_in_dly & sda_in;
wire sda_in_edge = sda_in_dly ^ sda_in;
// SCL Edge detection
reg scl_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) scl_dly <= 1'b1;
else scl_dly <= scl;
wire scl_fe = scl_dly & ~scl;
wire scl_re = ~scl_dly & scl;
wire scl_edge = scl_dly ^ scl;
// Delayed SCL Rising-Edge for SDA data sampling
reg [1:0] scl_re_dly;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) scl_re_dly <= 2'b00;
else scl_re_dly <= {scl_re_dly[0], scl_re};
wire scl_sample = scl_re_dly[1];
//=============================================================================
// 2) I2C START & STOP CONDITION DETECTION
//=============================================================================
//-----------------
// Start condition
//-----------------
wire start_detect = sda_in_fe & scl;
//-----------------
// Stop condition
//-----------------
wire stop_detect = sda_in_re & scl;
//-----------------
// I2C Slave Active
//-----------------
// The I2C logic will be activated whenever a start condition
// is detected and will be disactivated if the slave address
// doesn't match or if a stop condition is detected.
wire i2c_addr_not_valid;
reg i2c_active_seq;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) i2c_active_seq <= 1'b0;
else if (start_detect) i2c_active_seq <= 1'b1;
else if (stop_detect || i2c_addr_not_valid) i2c_active_seq <= 1'b0;
wire i2c_active = i2c_active_seq & ~stop_detect;
wire i2c_init = ~i2c_active | start_detect;
//=============================================================================
// 3) I2C STATE MACHINE
//=============================================================================
// State register/wires
reg [2:0] i2c_state;
reg [2:0] i2c_state_nxt;
// Utility signals
reg [8:0] shift_buf;
wire shift_rx_done;
wire shift_tx_done;
reg dbg_rd;
// State machine definition
parameter RX_ADDR = 3'h0;
parameter RX_ADDR_ACK = 3'h1;
parameter RX_DATA = 3'h2;
parameter RX_DATA_ACK = 3'h3;
parameter TX_DATA = 3'h4;
parameter TX_DATA_ACK = 3'h5;
// State transition
always @(i2c_state or i2c_init or shift_rx_done or i2c_addr_not_valid or shift_tx_done or scl_fe or shift_buf or sda_in)
case (i2c_state)
RX_ADDR : i2c_state_nxt = i2c_init ? RX_ADDR :
~shift_rx_done ? RX_ADDR :
i2c_addr_not_valid ? RX_ADDR :
RX_ADDR_ACK;
RX_ADDR_ACK : i2c_state_nxt = i2c_init ? RX_ADDR :
~scl_fe ? RX_ADDR_ACK :
shift_buf[0] ? TX_DATA :
RX_DATA;
RX_DATA : i2c_state_nxt = i2c_init ? RX_ADDR :
~shift_rx_done ? RX_DATA :
RX_DATA_ACK;
RX_DATA_ACK : i2c_state_nxt = i2c_init ? RX_ADDR :
~scl_fe ? RX_DATA_ACK :
RX_DATA;
TX_DATA : i2c_state_nxt = i2c_init ? RX_ADDR :
~shift_tx_done ? TX_DATA :
TX_DATA_ACK;
TX_DATA_ACK : i2c_state_nxt = i2c_init ? RX_ADDR :
~scl_fe ? TX_DATA_ACK :
~sda_in ? TX_DATA :
RX_ADDR;
// pragma coverage off
default : i2c_state_nxt = RX_ADDR;
// pragma coverage on
endcase
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) i2c_state <= RX_ADDR;
else i2c_state <= i2c_state_nxt;
//=============================================================================
// 4) I2C SHIFT REGISTER (FOR RECEIVING & TRANSMITING)
//=============================================================================
wire shift_rx_en = ((i2c_state==RX_ADDR) | (i2c_state ==RX_DATA) | (i2c_state ==RX_DATA_ACK));
wire shift_tx_en = (i2c_state ==TX_DATA) | (i2c_state ==TX_DATA_ACK);
wire shift_tx_en_pre = (i2c_state_nxt==TX_DATA) | (i2c_state_nxt==TX_DATA_ACK);
assign shift_rx_done = shift_rx_en & scl_fe & shift_buf[8];
assign shift_tx_done = shift_tx_en & scl_fe & (shift_buf==9'h100);
wire shift_buf_rx_init = i2c_init | ((i2c_state==RX_ADDR_ACK) & scl_fe & ~shift_buf[0]) |
((i2c_state==RX_DATA_ACK) & scl_fe);
wire shift_buf_rx_en = shift_rx_en & scl_sample;
wire shift_buf_tx_init = ((i2c_state==RX_ADDR_ACK) & scl_re & shift_buf[0]) |
((i2c_state==TX_DATA_ACK) & scl_re);
wire shift_buf_tx_en = shift_tx_en_pre & scl_fe & (shift_buf!=9'h100);
wire [7:0] shift_tx_val;
wire [8:0] shift_buf_nxt = shift_buf_rx_init ? 9'h001 : // RX Init
shift_buf_tx_init ? {shift_tx_val, 1'b1} : // TX Init
shift_buf_rx_en ? {shift_buf[7:0], sda_in} : // RX Shift
shift_buf_tx_en ? {shift_buf[7:0], 1'b0} : // TX Shift
shift_buf[8:0]; // Hold
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) shift_buf <= 9'h001;
else shift_buf <= shift_buf_nxt;
// Detect when the received I2C device address is not valid
assign i2c_addr_not_valid = (i2c_state == RX_ADDR) && shift_rx_done && (
`ifdef DBG_I2C_BROADCAST
(shift_buf[7:1] != dbg_i2c_broadcast[6:0]) &&
`endif
(shift_buf[7:1] != dbg_i2c_addr[6:0]));
// Utility signals
wire shift_rx_data_done = shift_rx_done & (i2c_state==RX_DATA);
wire shift_tx_data_done = shift_tx_done;
//=============================================================================
// 5) I2C TRANSMIT BUFFER
//=============================================================================
reg dbg_i2c_sda_out;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_i2c_sda_out <= 1'b1;
else if (scl_fe) dbg_i2c_sda_out <= ~((i2c_state_nxt==RX_ADDR_ACK) ||
(i2c_state_nxt==RX_DATA_ACK) ||
(shift_buf_tx_en & ~shift_buf[8]));
//=============================================================================
// 6) DEBUG INTERFACE STATE MACHINE
//=============================================================================
// State register/wires
reg [2:0] dbg_state;
reg [2:0] dbg_state_nxt;
// Utility signals
reg dbg_bw;
// State machine definition
parameter RX_CMD = 3'h0;
parameter RX_BYTE_LO = 3'h1;
parameter RX_BYTE_HI = 3'h2;
parameter TX_BYTE_LO = 3'h3;
parameter TX_BYTE_HI = 3'h4;
// State transition
always @(dbg_state or shift_rx_data_done or shift_tx_data_done or shift_buf or dbg_bw or
mem_burst_wr or mem_burst_rd or mem_burst or mem_burst_end or mem_bw)
case (dbg_state)
RX_CMD : dbg_state_nxt = mem_burst_wr ? RX_BYTE_LO :
mem_burst_rd ? TX_BYTE_LO :
~shift_rx_data_done ? RX_CMD :
shift_buf[7] ? RX_BYTE_LO :
TX_BYTE_LO;
RX_BYTE_LO : dbg_state_nxt = (mem_burst & mem_burst_end) ? RX_CMD :
~shift_rx_data_done ? RX_BYTE_LO :
(mem_burst & ~mem_burst_end) ?
(mem_bw ? RX_BYTE_LO :
RX_BYTE_HI) :
dbg_bw ? RX_CMD :
RX_BYTE_HI;
RX_BYTE_HI : dbg_state_nxt = ~shift_rx_data_done ? RX_BYTE_HI :
(mem_burst & ~mem_burst_end) ? RX_BYTE_LO :
RX_CMD;
TX_BYTE_LO : dbg_state_nxt = ~shift_tx_data_done ? TX_BYTE_LO :
( mem_burst & mem_bw) ? TX_BYTE_LO :
( mem_burst & ~mem_bw) ? TX_BYTE_HI :
~dbg_bw ? TX_BYTE_HI :
RX_CMD;
TX_BYTE_HI : dbg_state_nxt = ~shift_tx_data_done ? TX_BYTE_HI :
mem_burst ? TX_BYTE_LO :
RX_CMD;
// pragma coverage off
default : dbg_state_nxt = RX_CMD;
// pragma coverage on
endcase
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_state <= RX_CMD;
else dbg_state <= dbg_state_nxt;
// Utility signals
wire cmd_valid = (dbg_state==RX_CMD) & shift_rx_data_done;
wire rx_lo_valid = (dbg_state==RX_BYTE_LO) & shift_rx_data_done;
wire rx_hi_valid = (dbg_state==RX_BYTE_HI) & shift_rx_data_done;
//=============================================================================
// 7) REGISTER READ/WRITE ACCESS
//=============================================================================
parameter MEM_DATA = 6'h06;
// Debug register address & bit width
reg [5:0] dbg_addr;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst)
begin
dbg_bw <= 1'b0;
dbg_addr <= 6'h00;
end
else if (cmd_valid)
begin
dbg_bw <= shift_buf[6];
dbg_addr <= shift_buf[5:0];
end
else if (mem_burst)
begin
dbg_bw <= mem_bw;
dbg_addr <= MEM_DATA;
end
// Debug register data input
reg [7:0] dbg_din_lo;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_din_lo <= 8'h00;
else if (rx_lo_valid) dbg_din_lo <= shift_buf[7:0];
reg [7:0] dbg_din_hi;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_din_hi <= 8'h00;
else if (rx_lo_valid) dbg_din_hi <= 8'h00;
else if (rx_hi_valid) dbg_din_hi <= shift_buf[7:0];
assign dbg_din = {dbg_din_hi, dbg_din_lo};
// Debug register data write command
reg dbg_wr;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_wr <= 1'b0;
else dbg_wr <= (mem_burst & mem_bw) ? rx_lo_valid :
(mem_burst & ~mem_bw) ? rx_hi_valid :
dbg_bw ? rx_lo_valid :
rx_hi_valid;
// Debug register data read command
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_rd <= 1'b0;
else dbg_rd <= (mem_burst & mem_bw) ? (shift_tx_data_done & (dbg_state==TX_BYTE_LO)) :
(mem_burst & ~mem_bw) ? (shift_tx_data_done & (dbg_state==TX_BYTE_HI)) :
cmd_valid ? ~shift_buf[7] :
1'b0;
// Debug register data read value
assign shift_tx_val = (dbg_state==TX_BYTE_HI) ? dbg_dout[15:8] :
dbg_dout[7:0];
endmodule
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif