blob: c50e4d3fe097f6dbaec2836bf2a6c07903bf5d3c [file] [log] [blame] [edit]
// ========== Copyright Header Begin ==========================================
//
// OpenSPARC T1 Processor File: sparc_exu_aluaddsub.v
// Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
//
// The above named program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License version 2 as published by the Free Software Foundation.
//
// The above named program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this work; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// ========== Copyright Header End ============================================
////////////////////////////////////////////////////////////////////////
/*
// Module Name: sparc_exu_aluaddsub
// Description: This block implements addition and subtraction.
// It takes two operands, a carry_in, plus two control signals
// (subtract and use_cin). If subtract is high, then rs2_data
// is subtracted from rs1_data. If use_cin is high, then
// carry_in is added to the sum (addition) or subtracted from
// the result (subtraction). It outputs the result of the
// specified operation. To keep the cin calculation from
// being in the critical path, it is moved into the d-stage.
// All other calculations are in the e-stage.
*/
module sparc_exu_aluaddsub
(/*AUTOARG*/
// Outputs
adder_out, spr_out, alu_ecl_cout64_e_l, alu_ecl_cout32_e,
alu_ecl_adderin2_63_e, alu_ecl_adderin2_31_e,
// Inputs
clk, se, byp_alu_rs1_data_e, byp_alu_rs2_data_e, ecl_alu_cin_e,
ifu_exu_invert_d
);
input clk;
input se;
input [63:0] byp_alu_rs1_data_e; // 1st input operand
input [63:0] byp_alu_rs2_data_e; // 2nd input operand
input ecl_alu_cin_e; // carry in
input ifu_exu_invert_d; // subtract used by adder
output [63:0] adder_out; // result of adder
output [63:0] spr_out; // result of sum predict
output alu_ecl_cout64_e_l;
output alu_ecl_cout32_e;
output alu_ecl_adderin2_63_e;
output alu_ecl_adderin2_31_e;
wire [63:0] rs2_data; // 2nd input to adder
wire [63:0] rs1_data; // 1st input to adder
wire [63:0] subtract_d;
wire [63:0] subtract_e;
wire cout64_e;
////////////////////////////////////////////
// Module implementation
////////////////////////////////////////////
assign subtract_d[63:0] = {64{ifu_exu_invert_d}};
dff_s #(64) sub_dff(.din(subtract_d[63:0]), .clk(clk), .q(subtract_e[63:0]), .se(se),
.si(), .so());
assign rs1_data[63:0] = byp_alu_rs1_data_e[63:0];
assign rs2_data[63:0] = byp_alu_rs2_data_e[63:0] ^ subtract_e[63:0];
assign alu_ecl_adderin2_63_e = rs2_data[63];
assign alu_ecl_adderin2_31_e = rs2_data[31];
sparc_exu_aluadder64 adder(.rs1_data(rs1_data[63:0]), .rs2_data(rs2_data[63:0]),
.cin(ecl_alu_cin_e), .adder_out(adder_out[63:0]),
.cout32(alu_ecl_cout32_e), .cout64(cout64_e));
assign alu_ecl_cout64_e_l = ~cout64_e;
// sum predict
sparc_exu_aluspr spr(.rs1_data(rs1_data[63:0]), .rs2_data(rs2_data[63:0]), .cin(ecl_alu_cin_e),
.spr_out(spr_out[63:0]));
endmodule // sparc_exu_aluaddsub