| //All DFF* have INIT, but the hardware is always initialised to the reset |
| //value regardless. The parameter is ignored. |
| |
| // DFFN D Flip-Flop with Negative-Edge Clock |
| module \$_DFF_N_ (input D, C, output Q); DFFN _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C)); endmodule |
| // DFF D Flip-Flop |
| module \$_DFF_P_ (input D, C, output Q); DFF _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C)); endmodule |
| |
| // DFFE D Flip-Flop with Clock Enable |
| module \$_DFFE_PP_ (input D, C, E, output Q); DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E)); endmodule |
| module \$_DFFE_PN_ (input D, C, E, output Q); DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E)); endmodule |
| |
| // DFFNE D Flip-Flop with Negative-Edge Clock and Clock Enable |
| module \$_DFFE_NP_ (input D, C, E, output Q); DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E)); endmodule |
| module \$_DFFE_NN_ (input D, C, E, output Q); DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E)); endmodule |
| |
| // DFFR D Flip-Flop with Synchronous Reset |
| module \$__DFFS_PN0_ (input D, C, R, output Q); DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R)); endmodule |
| module \$__DFFS_PP0_ (input D, C, R, output Q); DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R)); endmodule |
| |
| // DFFNR D Flip-Flop with Negative-Edge Clock and Synchronous Reset |
| module \$__DFFS_NN0_ (input D, C, R, output Q); DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R)); endmodule |
| module \$__DFFS_NP0_ (input D, C, R, output Q); DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R)); endmodule |
| |
| // DFFRE D Flip-Flop with Clock Enable and Synchronous Reset |
| module \$__DFFSE_PN0 (input D, C, R, E, output Q); DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E)); endmodule |
| module \$__DFFSE_PP0 (input D, C, R, E, output Q); DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E)); endmodule |
| |
| // DFFNRE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Synchronous Reset |
| module \$__DFFNSE_PN0 (input D, C, R, E, output Q); DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E)); endmodule |
| module \$__DFFNSE_PP0 (input D, C, R, E, output Q); DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E)); endmodule |
| |
| // DFFS D Flip-Flop with Synchronous Set |
| module \$__DFFS_PN1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R)); endmodule |
| module \$__DFFS_PP1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R)); endmodule |
| |
| // DFFNS D Flip-Flop with Negative-Edge Clock and Synchronous Set |
| module \$__DFFS_NN1_ (input D, C, R, output Q); DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R)); endmodule |
| module \$__DFFS_NP1_ (input D, C, R, output Q); DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R)); endmodule |
| |
| // DFFSE D Flip-Flop with Clock Enable and Synchronous Set |
| module \$__DFFSE_PN1 (input D, C, R, E, output Q); DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E)); endmodule |
| module \$__DFFSE_PP1 (input D, C, R, E, output Q); DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E)); endmodule |
| |
| // DFFNSE D Flip-Flop with Negative-Edge Clock,Clock Enable,and Synchronous Set |
| module \$__DFFSE_NN1 (input D, C, R, E, output Q); DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E)); endmodule |
| module \$__DFFSE_NP1 (input D, C, R, E, output Q); DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E)); endmodule |
| |
| // DFFP D Flip-Flop with Asynchronous Preset |
| module \$_DFF_PP1_ (input D, C, R, output Q); DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R)); endmodule |
| module \$_DFF_PN1_ (input D, C, R, output Q); DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R)); endmodule |
| |
| // DFFNP D Flip-Flop with Negative-Edge Clock and Asynchronous Preset |
| module \$_DFF_NP1_ (input D, C, R, output Q); DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R)); endmodule |
| module \$_DFF_NN1_ (input D, C, R, output Q); DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R)); endmodule |
| |
| // DFFC D Flip-Flop with Asynchronous Clear |
| module \$_DFF_PP0_ (input D, C, R, output Q); DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R)); endmodule |
| module \$_DFF_PN0_ (input D, C, R, output Q); DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R)); endmodule |
| |
| // DFFNC D Flip-Flop with Negative-Edge Clock and Asynchronous Clear |
| module \$_DFF_NP0_ (input D, C, R, output Q); DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R)); endmodule |
| module \$_DFF_NN0_ (input D, C, R, output Q); DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R)); endmodule |
| |
| // DFFPE D Flip-Flop with Clock Enable and Asynchronous Preset |
| module \$__DFFE_PP1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule |
| module \$__DFFE_PN1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule |
| |
| // DFFNPE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Asynchronous Preset |
| module \$__DFFE_NP1 (input D, C, R, E, output Q); DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule |
| module \$__DFFE_NN1 (input D, C, R, E, output Q); DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule |
| |
| // DFFCE D Flip-Flop with Clock Enable and Asynchronous Clear |
| module \$__DFFE_PP0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule |
| module \$__DFFE_PN0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule |
| |
| // DFFNCE D Flip-Flop with Negative-Edge Clock,Clock Enable and Asynchronous Clear |
| module \$__DFFE_NP0 (input D, C, R, E, output Q); DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule |
| module \$__DFFE_NN0 (input D, C, R, E, output Q); DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule |
| |
| |
| module \$lut (A, Y); |
| parameter WIDTH = 0; |
| parameter LUT = 0; |
| |
| input [WIDTH-1:0] A; |
| output Y; |
| |
| generate |
| if (WIDTH == 1) begin |
| LUT1 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y), |
| .I0(A[0])); |
| end else |
| if (WIDTH == 2) begin |
| LUT2 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y), |
| .I0(A[0]), .I1(A[1])); |
| end else |
| if (WIDTH == 3) begin |
| LUT3 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y), |
| .I0(A[0]), .I1(A[1]), .I2(A[2])); |
| end else |
| if (WIDTH == 4) begin |
| LUT4 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y), |
| .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3])); |
| end else |
| if (WIDTH == 5) begin |
| wire f0, f1; |
| \$lut #(.LUT(LUT[15: 0]), .WIDTH(4)) lut0 (.A(A[3:0]), .Y(f0)); |
| \$lut #(.LUT(LUT[31:16]), .WIDTH(4)) lut1 (.A(A[3:0]), .Y(f1)); |
| MUX2_LUT5 mux5(.I0(f0), .I1(f1), .S0(A[4]), .O(Y)); |
| end else |
| if (WIDTH == 6) begin |
| wire f0, f1; |
| \$lut #(.LUT(LUT[31: 0]), .WIDTH(5)) lut0 (.A(A[4:0]), .Y(f0)); |
| \$lut #(.LUT(LUT[63:32]), .WIDTH(5)) lut1 (.A(A[4:0]), .Y(f1)); |
| MUX2_LUT6 mux6(.I0(f0), .I1(f1), .S0(A[5]), .O(Y)); |
| end else |
| if (WIDTH == 7) begin |
| wire f0, f1; |
| \$lut #(.LUT(LUT[63: 0]), .WIDTH(6)) lut0 (.A(A[5:0]), .Y(f0)); |
| \$lut #(.LUT(LUT[127:64]), .WIDTH(6)) lut1 (.A(A[5:0]), .Y(f1)); |
| MUX2_LUT7 mux7(.I0(f0), .I1(f1), .S0(A[6]), .O(Y)); |
| end else |
| if (WIDTH == 8) begin |
| wire f0, f1; |
| \$lut #(.LUT(LUT[127: 0]), .WIDTH(7)) lut0 (.A(A[6:0]), .Y(f0)); |
| \$lut #(.LUT(LUT[255:128]), .WIDTH(7)) lut1 (.A(A[6:0]), .Y(f1)); |
| MUX2_LUT8 mux8(.I0(f0), .I1(f1), .S0(A[7]), .O(Y)); |
| end else begin |
| wire _TECHMAP_FAIL_ = 1; |
| end |
| endgenerate |
| endmodule |